亲宝软件园·资讯

展开

Python AI老照片上色

渡码 人气:0

哈喽,大家好。

今天继续给大家分享有趣的 AI 项目。

上次我们分享了用GAN(生成对抗网络)让静态图片动起来

今天我们分享用NoGAN的图像增强技术给老照片着色。效果如下:

原图

上色后

NoGAN是一种新型GAN,它能花费最少的时间进行GAN训练。

今天分享的这个项目已在GitHub开源项目,下面我们来运行一下。

1. 准备工作

首先,用git clone命令下载源码

git clone https://github.com/jantic/DeOldify.git

进入项目根目录,安装Python依赖包

pip3 install -r requirements.txt

编写代码运行项目之前,需要下载预训练好的模型。项目提供了三个模型

模型

区别如下:

将下载好的模型文件放在项目根目录的models目录下即可。

2. 编写代码

在项目根目录同级目录下创建Python文件,编写代码加载刚刚下载好的模型文件。

from DeOldify.deoldify.generators import gen_inference_wide
from DeOldify.deoldify.filters import MasterFilter, ColorizerFilter

# 指定模型文件
learn = gen_inference_wide(root_folder=Path('./DeOldify'), weights_name='ColorizeVideo_gen')

# 加载模型
deoldfly_model = MasterFilter([ColorizerFilter(learn=learn)], render_factor=10)

root_folder指定项目根目录,weights_name指定接下来使用哪个模型为照片上色。

读取老照片,进行上色

import cv2
import numpy as np
from PIL import Image

img = cv2.imread('./images/origin.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(img)

filtered_image = deoldfly_model.filter(
    pil_img, pil_img, render_factor=35, post_process=True
)

result_img = np.asarray(filtered_image)
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
cv2.imwrite('deoldify.jpg', result_img)

cv2读取老照片,并用PIL.Image模块将图片转换成模型输入所需要的格式,送入模型进行上色,完成后保存。

上述代码是我从项目源码中抽取的,可以看到,运行代码还是非常简单的。

加载全部内容

相关教程
猜你喜欢
用户评论