Python目标检测
Together_CZ 人气:4当下基本所有的目标检测类的任务都会选择基于深度学习的方式,诸如:YOLO、SSD、RCNN等等,这一领域不乏有很多出色的模型,而且还在持续地推陈出新,模型的迭代速度很快,其实最早实现检测的时候还是基于机器学习去做的,HOG+SVM就是非常经典有效的一套框架,今天这里并不是说要做出怎样的效果,而是基于HOG+SVM来实践机器学习检测的流程。
这里为了方便处理,我是从网上找的一个数据集,主要是行人检测方向的,当然了这个用车辆检测、火焰检测等等的数据集都是可以的,本质都是一样的。
首先看下数据集,数据集主要分为两个类别,一个类别是包含行人的,另一个类别是不包含行人的,首先看下不包含行人的:
接下来看下包含行人的:
看到这里,其实就不难理解,这里的SVM扮演的主要作用就是二分类模型了。
接下来我们需要对原始图像的数据集进行特征提取计算,这里是基于HOG的方式实现的,可以自行实现HOG特征向量提取方法,也可以直接使用skimage提供的HOG提取器来一步实现,这里为了方便,我是直接使用的skimage提供的HOG方法,核心实现如下:
def img2Feature(dataDir="data/",save_path="feature.json"): """ 特征提取计算 """ feature=[] for one_label in os.listdir(dataDir): print("one_label: ", one_label) oneDir=dataDir+one_label+'/' for one_pic in os.listdir(oneDir): one_path=oneDir+one_pic print("one_path: ", one_path) #加载图像 one_img = imread(one_path, as_gray=True) one_vec = hog(one_img, orientations=orientations, pixels_per_cell=pixels_per_cell, cells_per_block=cells_per_block, visualize=visualize, block_norm=normalize) one_vec=one_vec.tolist() one_vec.append(one_label) feature.append(one_vec) print("feature_length: ", len(feature)) with open(save_path,"w") as f: f.write(json.dumps(feature))
HOG提取得到的向量维度很大,这里就不进行展示了。
之后就可以训练模型了,核心实现如下:
resDir = "results/" if not os.path.exists(resDir): os.makedirs(resDir) data = "feature.json" dict1 = DTModel(data=data, rationum=0.25, model_path=resDir + "DT.model") dict2 = RFModel(data=data, rationum=0.25, model_path=resDir + "RF.model") dict3 = SVMModel(data=data, rationum=0.25, model_path=resDir + "SVM.model") res_dict = {} res_dict["DT"], res_dict["RF"], res_dict["SVM"] = dict1, dict2, dict3 with open(resDir + "res_dict.json", "w") as f: f.write(json.dumps(res_dict)) comparePloter(dict1, dict2, dict3, save_path=resDir + "comparePloter.jpg")
这里,我是同时使用了决策树DT、随机森林RF、支持向量机SVM三种模型来进行分类和对比可视化,对比结果如下:
{ "DT": { "precision": 0.7573482282561567, "recall": 0.7597846737437716, "F1": 0.7584933696379963, "accuracy": 0.7584933696379963 }, "RF": { "precision": 0.9156160607479066, "recall": 0.8801773928046967, "F1": 0.893107332148193, "accuracy": 0.893107332148193 }, "SVM": { "precision": 0.9281402443868877, "recall": 0.9272928963585789, "F1": 0.9277128372009962, "accuracy": 0.9277128372009962 } }
为了直观展示,这里对三种模型的性能进行可视化展示,如下所示:
接下来我们对训练好的模型调用进行测试,查看具体的效果,随机选取了几张网上的图像,测试结果如下:
整体看下来,效果表现一般,不过这个也只是主要以实践流程为目的,并不是实际做项目的,而且各个环节都有优化提升的空间,模型的参数也都没有调过。
加载全部内容