亲宝软件园·资讯

展开

C语言数据存储

耀 星 人气:0

前言

在计算机内存中,数据的存储方式都是以0和1的形式存储,也就是二进制的形式,数据是如何向内存写入的呢?整形数据以补码的形式存储,浮点型的存储规则较多,类似于科学计数法。

‍数据类型介绍

为什么需要有这些数据类型?

数据类型解决了数据存储的问题。

‍整形数据在内存中存储

整数中有三种二进制表示形式,分别是原码、反码、补码,正整数的原码 = 反码 = 补码,通常取最高位作为符号位。

原码:直接将正负整数按照二进制形式转换即可。

15原码:  (0) 1111 
-15原码: (1) 1111
23原码:  (0) 10111
-28原码: (1) 11100
注意:()表示符号位,1表示负,0表示正。

补码:负整数的补码将原码的符号位不变,其它位依次取反。

15反码:  (0) 1111 
-15反码: (1) 0000
23反码:  (0) 10111
-28反码: (1) 00011

反码:负整数的反码在补码的基础上+1

15补码:  (0) 1111 
-15补码: (1) 0001
23补码:  (0) 11000
-28补码: (1) 00100

对于整形数据来说:数据存放的实际是存放补码。

当我们定义变量时,系统会根据变量的数据类型,给变量开辟空间。这也是为什么要引入数据类型这个概念。

1.举例:5是如何存储到内存中

5是一个整形常量,在C语言中写一个整形常量,不超过int类型所能表示的范围,以32位表示整形常量。

5的原码码 = 补码 = 反码

5原码:00000000 00000000 00000000 00000101

5存入short类型的变量:取后16位

00000000 00000000 00000000 00000101

5存入int类型的变量:取32位

00000000 00000000 00000000 00000101

2.举例:-10是如何存储到内存中的 

-10原码:10000000 00000000 00000000 00001010

-10反码:11111111 11111111 11111111 11110101

-10补码:11111111 11111111 11111111 11110110

-10存入short类型:取后16位

11111111 11111111 11111111 11110110

-10存入int类型变量:取32位

11111111 11111111 11111111 11110110

 如何取出数据?

取出数据首先要知道数据的地址,得到地址后,如何确定取出范围,由变量的数据类型来决定。

int main()
{
	/*
	a的原码、反码、补码:00000000 10011000 10010110 1000000
	*/
	int a = 10000000;
	/*
	b是short*类型,解引用访问时,只有访问两个字节的权限
	*b拿出的数据是补码: 10010110 10000000->原码:11101001 10000000
	*/
	short* b = &a;
	printf("%d", *b);//-27008
	return 0;
}

为什么要使用补码的形式存储?

在计算机中CPU有中,只有加法器。以补码形式存储,符号位参与运算,既可以计算减法也可以计算加法。

大端存储模式:指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中。

小端存储模式:指数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中。

 大小端主要由处理器决定,与编译器,操作系统这些没有直接的关系。

‍浮点型数据在内存存储

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

类似于科学计数法:1090 = 1.090*10^3 

IEEE754规定单精度浮点型和双精度浮点型存储模型

IEEE 754对有效数字M和指数E,还有一些特别的规定。

1<=M<2,M可以写成1.xxxxxx的形式,xxxxxx表示小数部分。

IEEE754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以舍去,只保存后面的xxxxxx部分。在读取时,再把第一位添上。节省一位有效数字.

对于指数E,情况比较多。

首先E为无符号整数,如果E为八位,取值范围时0~255,E为11位,取值范围为0~2047,但是再科学计数法中E可以出现负数,所以IEEE 754则规定,存入内存E的真实数必须加上一个中间数,对于八位的E,中间数为127,对于11位的E,中间数位1023。例如2^13的E是13,所以在保存E时,必须保存成13+127 = 140,即10001100。

指数E从内存中取出还可以分为3种情况

1.E不全为0或不全为1

这时浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

比如:

0.5的二进制位0.1,由于规定整数部分1<=M<2,即第一位必须位1,则将小数点右移一位,则为1.0*2^(-1),E的实际存储位-1+127,E的实际存储为01111110,M = 1.0,小数部分为0,M的存储为23位00000000000000000000000。

则0.5的二进制表示形式位:

0 01111110 00000000 00000000 0000000

2.E全为0

这时,浮点数的指数E等于1-127(或者1-1023),即为真实值

有效数字M不再加上第一位的1,而是还原位0.xxxxxx的小数,这样可以表示0,以及接近于0的很小数字。

3.E全为1

如果有效数字M全位0,表示无穷大。

举例:

10.0转化为二进制形式为1010.0,相当于:1.010*2^3,按照标准格式 可得S = 0,M = 1.010,E = 3。

举例1:7.25是如何存储到内存中的呢?

首先将7.25转化为二进制111.01

写成标准形式:1.1101*2^2

S = 0,M = 1101,E = 2+127

0 10000001 11010000 00000000 0000000

验证: 

有误的地方还请批评指正。 

加载全部内容

相关教程
猜你喜欢
用户评论