亲宝软件园·资讯

展开

Python使用ClickHouse实践

肖永威 人气:19

ClickHouse是近年来备受关注的开源列式数据库(DBMS),主要用于数据联机分析(OLAP)领域,于2016年开源。目前国内社区火热,各个大厂纷纷跟进大规模使用。

在国外,Yandex内部有数百节点用于做用户点击行为分析,CloudFlare、Spotify等头部公司也在使用。

ClickHouse最初是为 YandexMetrica 世界第二大Web分析平台 而开发的。多年来一直作为该系统的核心组件被该系统持续使用着。

1. 关于ClickHouse使用实践

首先,我们回顾一些基础概念:

1.1. ClickHouse 应用于数据仓库场景

ClickHouse做为列式数据库,列式数据库更适合OLAP场景,OLAP场景的关键特征:

1.2. 客户端工具DBeaver

Clickhouse客户端工具为dbeaver,官网为https://dbeaver.io/

通过操作界面菜单中“数据库”创建配置新连接,如下图所示,选择并下载ClickHouse驱动(默认不带驱动)。

在这里插入图片描述

DBeaver配置是基于Jdbc方式,一般默认URL和端口如下:

jdbc:clickhouse://192.168.17.61:8123

如下图所示。

在是用DBeaver连接Clickhouse做查询时,有时候会出现连接或查询超时的情况,这个时候可以在连接的参数中添加设置socket_timeout参数来解决问题。

jdbc:clickhouse://{host}:{port}[/{database}]?socket_timeout=600000

在这里插入图片描述

1.3. 大数据应用实践

本应用是某交易大数据,主要包括交易主表、相关客户信息、物料信息、历史价格、优惠及积分信息等,其中主交易表为自关联树状表结构。

为了分析客户交易行为,在有限资源的条件下,按日和交易点抽取、汇集交易明细为交易记录,如下图所示。

在这里插入图片描述

其中,在ClickHouse上,交易数据结构由60个列(字段)组成,截取部分如下所示:

在这里插入图片描述

针对频繁出现“would use 10.20 GiB , maximum: 9.31 GiB”等内存不足的情况,基于ClickHouse的SQL,编写了提取聚合数据集SQL语句,如下所示。

在这里插入图片描述

大约60s返回结果,如下所示:

在这里插入图片描述

2. Python使用ClickHouse实践

2.1. ClickHouse第三方Python驱动clickhouse_driver

ClickHouse没有提供官方Python接口驱动,常用第三方驱动接口为clickhouse_driver,可以使用pip方式安装,如下所示:

pip install clickhouse_driver
Collecting clickhouse_driver
  Downloading https://files.pythonhosted.org/packages/88/59/c570218bfca84bd0ece896c0f9ac0bf1e11543f3c01d8409f5e4f801f992/clickhouse_driver-0.2.1-cp36-cp36m-win_amd64.whl (173kB)
    100% |████████████████████████████████| 174kB 27kB/s
Collecting tzlocal<3.0 (from clickhouse_driver)
  Downloading https://files.pythonhosted.org/packages/5d/94/d47b0fd5988e6b7059de05720a646a2930920fff247a826f61674d436ba4/tzlocal-2.1-py2.py3-none-any.whl
Requirement already satisfied: pytz in d:\python\python36\lib\site-packages (from clickhouse_driver) (2020.4)
Installing collected packages: tzlocal, clickhouse-driver
Successfully installed clickhouse-driver-0.2.1 tzlocal-2.1

使用的client api不能用了,报错如下:

  File "clickhouse_driver\varint.pyx", line 62, in clickhouse_driver.varint.read_varint

  File "clickhouse_driver\bufferedreader.pyx", line 55, in clickhouse_driver.bufferedreader.BufferedReader.read_one

  File "clickhouse_driver\bufferedreader.pyx", line 240, in clickhouse_driver.bufferedreader.BufferedSocketReader.read_into_buffer

EOFError: Unexpected EOF while reading bytes

Python驱动使用ClickHouse端口9000

ClickHouse服务器和客户端之间的通信有两种协议:http(端口8123)和本机(端口9000)。DBeaver驱动配置使用jdbc驱动方式,端口为8123。

ClickHouse接口返回数据类型为元组,也可以返回Pandas的DataFrame,本文代码使用的为返回DataFrame。

collection = self.client.query_dataframe(self.query_sql)

2.2. 实践程序代码

由于我本机最初资源为8G内存(现扩到16G),以及实际可操作性,分批次取数据保存到多个文件中,每个文件大约为1G。

# -*- coding: utf-8 -*-
'''
Created on 2021年3月1日
@author: xiaoyw
'''
import pandas as pd
import json
import numpy as np
import datetime
from clickhouse_driver import Client
#from clickhouse_driver import connect
# 基于Clickhouse数据库基础数据对象类
class DB_Obj(object):
    '''
    192.168.17.61:9000
    ebd_all_b04.card_tbl_trade_m_orc
    '''
    def __init__(self, db_name):
        self.db_name = db_name
        host='192.168.17.61' #服务器地址
        port ='9000' #'8123' #端口
        user='***' #用户名
        password='***' #密码
        database=db_name #数据库
        send_receive_timeout = 25 #超时时间
        self.client = Client(host=host, port=port, database=database) #, send_receive_timeout=send_receive_timeout)
        #self.conn = connect(host=host, port=port, database=database) #, send_receive_timeout=send_receive_timeout)
        
    def setPriceTable(self,df):
        self.pricetable = df
    def get_trade(self,df_trade,filename):          
        print('Trade join price!')
        df_trade = pd.merge(left=df_trade,right=self.pricetable[['occurday','DIM_DATE','END_DATE','V_0','V_92','V_95','ZDE_0','ZDE_92',
                              'ZDE_95']],how="left",on=['occurday'])
        df_trade.to_csv(filename,mode='a',encoding='utf-8',index=False)
    def get_datas(self,query_sql):          
        n = 0 # 累计处理卡客户数据
        k = 0 # 取每次DataFrame数据量
        batch = 100000 #100000 # 分批次处理
        i = 0 # 文件标题顺序累加
        flag=True # 数据处理解释标志
        filename = 'card_trade_all_{}.csv'
        while flag:
            self.query_sql = query_sql.format(n, n+batch) 
            print('query started')
            collection = self.client.query_dataframe(self.query_sql)
            print('return query result')
            df_trade = collection #pd.DataFrame(collection)
            
            i=i+1
            k = len(df_trade) 
            if k > 0:
                self.get_trade(df_trade, filename.format(i))
            
            n = n + batch
            if k == 0:
                flag=False        
            print('Completed ' + str(k) + 'trade details!')
            print('Usercard count ' + str(n) )    
               
        return n                
# 价格变动数据集
class Price_Table(object):
    def __init__(self, cityname, startdate):
        self.cityname = cityname
        self.startdate = startdate
        self.filename = 'price20210531.csv'
        
    def get_price(self):
        df_price = pd.read_csv(self.filename)
        ......
            self.price_table=self.price_table.append(data_dict, ignore_index=True)    
            
        print('generate price table!')   
class CardTradeDB(object):
    def __init__(self,db_obj): 
        self.db_obj = db_obj
        
    def insertDatasByCSV(self,filename):
        # 存在数据混合类型
        df = pd.read_csv(filename,low_memory=False)
        
    # 获取交易记录    
    def getTradeDatasByID(self,ID_list=None):
        # 字符串过长,需要使用'''
        query_sql = '''select C.carduser_id,C.org_id,C.cardasn,C.occurday as 
        		......
                limit {},{})
                group by C.carduser_id,C.org_id,C.cardasn,C.occurday
                order by C.carduser_id,C.occurday'''
        
        
        n = self.db_obj.get_datas(query_sql)
        
        return n
                    
if __name__ == '__main__':
    PTable = Price_Table('湖北','2015-12-01')   
    PTable.get_price()  
    
    db_obj = DB_Obj('ebd_all_b04')
    db_obj.setPriceTable(PTable.price_table)
    CTD = CardTradeDB(db_obj)
    df = CTD.getTradeDatasByID()

返回本地文件为:

在这里插入图片描述

3. 小结一下

ClickHouse在OLAP场景下应用,查询速度非常快,需要大内存支持。Python第三方clickhouse-driver 驱动基本满足数据处理需求,如果能返回Pandas DataFrame最好。

ClickHouse和Pandas聚合都是非常快的,ClickHouse聚合函数也较为丰富(例如文中anyLast(x)返回最后遇到的值),如果能通过SQL聚合的,还是在ClickHouse中完成比较理想,把更小的结果集反馈给Python进行机器学习。

操作ClickHouse删除指定数据

def info_del2(i):
    client = click_client(host='地址', port=端口, user='用户名', password='密码',
                          database='数据库')
    sql_detail='alter table SS_GOODS_ORDER_ALL delete where order_id='+str(i)+';'
    try:
        client.execute(sql_detail)
    except Exception as e:
        print(e,'删除商品数据失败')

在进行数据删除的时候,python操作clickhou和mysql的方式不太一样,这里不能使用以往常用的%s然后添加数据的方式,必须完整的编辑一条语句,如同上面方法所写的一样,传进去的参数统一使用str类型

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论