亲宝软件园·资讯

展开

OpenCV相机标定

czhzasui 人气:0

一、OpenCV标定的几个常用函数

findChessboardCorners() 棋盘格角点检测

bool findChessboardCorners( InputArray image, 
                                Size patternSize, 
                                OutputArray corners,
                                int flags = CALIB_CB_ADAPTIVE_THRESH + 
                                CALIB_CB_NORMALIZE_IMAGE );

第一个参数是输入的棋盘格图像(可以是8位单通道或三通道图像);

第二个参数是棋盘格内部的角点的行列数(注意:不是棋盘格的行列数,如棋盘格的行列数分别为4、8,而内部角点的行列数分别是3、7,因此这里应该指定为cv::Size(3, 7));

第三个参数是检测到的棋盘格角点,类型为std::vectorcv::Point2f。

第四个参数flag,用于指定在检测棋盘格角点的过程中所应用的一种或多种过滤方法,可以使用下面的一种或多种,如果都是用则使用OR:

cv::drawChessboardCorners() 棋盘格角点的绘制

drawChessboardCorners( InputOutputArray image, 
                           Size patternSize,
                           InputArray corners, 
                           bool patternWasFound );

find4QuadCornerSubpix() 对粗提取的角点进行精确化

find4QuadCornerSubpix( InputArray img, 
                           InputOutputArray corners, 
                           Size region_size );

cornerSubPix() 亚像素检测

void cornerSubPix( InputArray image, 
                       InputOutputArray corners,
                       Size winSize, 
                       Size zeroZone,
                       TermCriteria criteria );

calibrateCamera() 求解摄像机的内在参数和外在参数

double calibrateCamera( InputArrayOfArrays objectPoints,
                            InputArrayOfArrays imagePoints,
                            Size imageSize,
                            InputOutputArray cameraMatrix, 
                            InputOutputArray distCoeffs,
                            OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                            int flags = 0, 
                            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + 
                            TermCriteria::EPS, 30, DBL_EPSILON) );

objectPoints,世界坐标,用vector<vector>,输入x,y坐标,z坐标为0

imagePoints,图像坐标,vector<vector>

imageSize,图像的大小用于初始化标定摄像机的image的size

cameraMatrix,内参数矩阵

distCoeffs,畸变矩阵

rvecs,位移向量

tvecs,旋转向量

flags,可以组合:

CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,将包含有效的fx,fy,cx,cy的估计值的内参矩阵cameraMatrix,作为初始值输入,然后函数对其做进一步优化。如果不使用这个参数,用图像的中心点初始化光轴点坐标(cx, cy),使用最小二乘估算出fx,fy(这种求法好像和张正友的论文不一样,不知道为何要这样处理)。注意,如果已知内部参数(内参矩阵和畸变系数),就不需要使用这个函数来估计外参,可以使用solvepnp()函数计算外参数矩阵。

CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点,光轴点将保持为图像的中心点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,保持为输入的值。

CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当
CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy的实际输入值将会被忽略,只有fx/fy的比值被计算和使用。

CV_CALIB_ZERO_TANGENT_DIST:切向畸变系数(P1,P2)被设置为零并保持为零。

CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变系数在优化中保持不变。如果设置了CV_CALIB_USE_INTRINSIC_GUESS参数,就从提供的畸变系数矩阵中得到。否则,设置为0。

CV_CALIB_RATIONAL_MODEL(理想模型):启用畸变k4,k5,k6三个畸变参数。使标定函数使用有理模型,返回8个系数。如果没有设置,则只计算其它5个畸变参数。

CALIB_THIN_PRISM_MODEL (薄棱镜畸变模型):启用畸变系数S1、S2、S3和S4。使标定函数使用薄棱柱模型并返回12个系数。如果不设置标志,则函数计算并返回只有5个失真系数。

CALIB_FIX_S1_S2_S3_S4 :优化过程中不改变薄棱镜畸变系数S1、S2、S3、S4。如果cv_calib_use_intrinsic_guess设置,使用提供的畸变系数矩阵中的值。否则,设置为0。

CALIB_TILTED_MODEL (倾斜模型):启用畸变系数tauX and tauY。标定函数使用倾斜传感器模型并返回14个系数。如果不设置标志,则函数计算并返回只有5个失真系数。

CALIB_FIX_TAUX_TAUY :在优化过程中,倾斜传感器模型的系数不被改变。如果cv_calib_use_intrinsic_guess设置,从提供的畸变系数矩阵中得到。否则,设置为0。

initUndistortRectifyMap() 计算畸变参数

void initUndistortRectifyMap(InputArray cameraMatrix, 
                                InputArray distCoeffs, 
                                InputArray R, 
                                InputArray newCameraMatrix, 
                                Size size, 
                                int m1type, 
                                OutputArray map1, 
                                OutputArray map2)

二、绘制棋盘格,拍摄照片

这里自己画一个棋盘格用作标定,长度为1280像素,宽490像素,横向10方格,纵向7方格

std_cb = Vision::makeCheckerboard(1280, 490, 10, 7, 0, 
(char *)"../blizzard/res/calibration/std_cb.png");

效果如图

Vision是我个人创建的视觉类,可以用来绘制标准的棋盘格。

头文件vision.h

//
// Created by czh on 18-10-16.
//
#ifndef OPENGL_PRO_VISION_H
#define OPENGL_PRO_VISION_H

#include "opencv2/opencv.hpp"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgcodecs/imgcodecs.hpp>

#include "iostream"

class Vision {
public:
    static cv::Mat read(std::string file_path, int flags = cv::IMREAD_ANYCOLOR | cv::IMREAD_ANYDEPTH);

    static cv::Mat write(std::string file_path, int flags = cv::IMREAD_ANYCOLOR | cv::IMREAD_ANYDEPTH);

    static void dispConfig(cv::Mat img);

    static cv::Mat makeCheckerboard(int bkgWidth, int bkgHeight, int sqXnum, int sqYnum = 0, int borderThickness = 0, char *savePath = NULL);
private:

};
#endif //OPENGL_PRO_VISION_H

源文件vision.cpp

//
// Created by czh on 18-10-16.
//

#include "vision.h"
#include "string.h"

using namespace std;
using namespace cv;

const char *findName(const char *ch) {
    const char *name = strrchr(ch, '/');
    return ++name;
}

cv::Mat Vision::read(std::string file_path, int flags) {
    printf("#Vision read\n");
    cv::Mat img;
    img = cv::imread(file_path, flags);
    if (img.data == NULL) {
        printf("\tError:vision read\n");
    } else {
        dispConfig(img);
    }
    return img;
}

void Vision::dispConfig(cv::Mat img) {
    printf("\tpixel:%d*%d, channels:%d\n", img.size().width, img.size().height, img.channels());
}

cv::Mat Vision::makeCheckerboard(int bkgWidth, int bkgHeight, int sqXnum, int sqYnum, int thickNum, char *savePath) {
    if(sqYnum == 0){
        sqYnum = sqXnum;
    }
    if(savePath == NULL){
        char *defaultPath = (char *)"../res/calibration/maths.png";
        savePath = defaultPath;
    }
    int checkboardX = 0;//棋盘x坐标
    int checkboardY = 0;//棋盘y坐标
    int xLen = bkgWidth / sqXnum;//x方格长度
    int yLen = bkgHeight / sqYnum;//y方格长度
    cv::Mat img(bkgHeight + thickNum * 2, bkgWidth + thickNum * 2, CV_8UC4, cv::Scalar(0, 255, 255, 255));
    for (int i = 0; i < img.rows; i++) {

        for (int j = 0; j < img.cols; j++) {

            if (i < thickNum || i >= thickNum + bkgHeight || j < thickNum || j >= thickNum + bkgWidth) {
                img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
                continue;
            }
            checkboardX = j - thickNum;
            checkboardY = i - thickNum;
            if (checkboardY / yLen % 2 == 0) {
                if ((checkboardX) / xLen % 2 == 0) {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(255, 255, 255, 255);
                } else {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
                }
            }
            else{
                if ((checkboardX) / xLen % 2 != 0) {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(255, 255, 255, 255);
                } else {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
                }
            }
        }
    }
    imwrite(savePath, img);    //保存生成的图片
    printf("#makeCheckerboard %d*%d\n", bkgWidth + thickNum, bkgHeight + thickNum);
    return img;
}

用A4纸打印棋盘格,相机拍摄照片。

我偷懒,拿了别人的标定照片

三、相机标定

下面是相机标定代码

cv::imwrite("../blizzard/res/calibration/cb_source.png", cb_source);

    printf("#Start scan corner\n");
    cv::Mat img;
    std::vector<cv::Point2f> image_points;
    std::vector<std::vector<cv::Point2f>> image_points_seq; /* 保存检测到的所有角点 */
    if (cv::findChessboardCorners(cb_source, cv::Size(aqXnum, aqYnum), image_points, 0) == 0) {
        printf("#Error: Corners not find ");
        return 0;
    } else {
        cvtColor(cb_source, img, CV_RGBA2GRAY);
        cv::imwrite("../blizzard/res/calibration/cb_gray.png", img);
        //find4QuadCornerSubpix(img, image_points, cv::Size(5, 5));

        cv::cornerSubPix(img, image_points, cv::Size(11, 11), cv::Size(-1, -1),
                         cv::TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 30, 0.01));

        image_points_seq.push_back(image_points);

        cv::Mat cb_corner;
        cb_corner = cb_source.clone();
        drawChessboardCorners(cb_corner, cv::Size(aqXnum, aqYnum), image_points, true);
        cv::imwrite("../blizzard/res/calibration/cb_corner.png", cb_corner);
    }

    printf("#Start calibrate\n");
    cv::Size square_size = cv::Size(14.2222, 12);
    std::vector<std::vector<cv::Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
    cv::Mat cameraMatrix = cv::Mat(3, 3, CV_32FC1, cv::Scalar::all(0)); /* 摄像机内参数矩阵 */
    cv::Mat distCoeffs = cv::Mat(1, 5, CV_32FC1, cv::Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
    std::vector<cv::Mat> tvecsMat;  /* 每幅图像的旋转向量 */
    std::vector<cv::Mat> rvecsMat;  /* 每幅图像的平移向量 */

    std::vector<cv::Point3f> realPoint;
    for (int i = 0; i < aqYnum; i++) {
        for (int j = 0; j < aqXnum; j++) {
            cv::Point3f tempPoint;
            /* 假设标定板放在世界坐标系中z=0的平面上 */
            tempPoint.x = i * square_size.width;
            tempPoint.y = j * square_size.height;
            tempPoint.z = 0;
            realPoint.push_back(tempPoint);
        }
    }
    object_points.push_back(realPoint);

    printf("#objectPoints: %ld\n", sizeof(object_points[0]));
    std::cout << object_points[0] << std::endl;

    printf("#image_points: %ld\n", sizeof(image_points_seq[0]));
    std::cout << image_points << std::endl;

    printf("#image size\n");
    std::cout << SCREEN_WIDTH << "*" << SCREEN_HEIGHT << std::endl;

    cv::calibrateCamera(object_points, image_points_seq, cb_source.size(), cameraMatrix, distCoeffs, rvecsMat, tvecsMat,
                        CV_CALIB_FIX_K3);

    std::cout << "tvecsMat:\n" << tvecsMat[0] << std::endl;
    std::cout << "rvecsMat:\n" << rvecsMat[0] << std::endl;

    std::cout << "#cameraMatrix:\n" << cameraMatrix << std::endl;
    std::cout << "#distCoeffs:\n" << distCoeffs << std::endl;

四、对图片进行校正

	cv::Mat cb_final;

    cv::Mat mapx = cv::Mat(cb_source.size(), CV_32FC1);
    cv::Mat mapy = cv::Mat(cb_source.size(), CV_32FC1);
    cv::Mat R = cv::Mat::eye(3, 3, CV_32F);
    //initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cv::Mat(), cb_source.size(), CV_32FC1,
    //                        mapx, mapy);
    //cv::remap(cb_source, cb_final, mapx, mapy, cv::INTER_LINEAR);

    undistort(cb_source, cb_final, cameraMatrix, distCoeffs);
    
    cv::imwrite("../blizzard/res/calibration/cb_final.png", cb_final);

1.校正前的图片

2.校正后的图片

总结 

加载全部内容

相关教程
猜你喜欢
用户评论