Python3进程和线程
FUXI_Willard 人气:01.概述
""" 基础知识: 1.多任务:操作系统可以同时运行多个任务; 2.单核CPU执行多任务:操作系统轮流让各个任务交替执行; 3.一个任务即一个进程(process),如:打开一个浏览器,即启动一个浏览器进程; 4.在一个进程内,要同时干多件事,需要同时运行多个子任务,把进程内的子任务称为"线程(Thread)"; 5.每个进程至少做一件事,因此,一个进程至少有一个线程; 同时执行多线程的解决方案: a.启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务; b.启动一个进程,在一个进程内启动多个线程,多个线程一块执行多个任务; c.启动多个进程,每个进程启动多个线程; 即多任务的实现方式: a.多进程模式; b.多线程模式; c.多进程+多线程模式; """
2.多进程
import os print("Process (%s) start..." % os.getpid()) """ 只能在Linux/Unix/Mac上工作 pid = os.fork() if pid == 0: print("I am child process (%s) and my parent is %s." % (os.getpid(), os.getppid())) else: print("I (%s) just created a child process (%s)." % (os.getpid(), pid)) """ print("Hello.")
# multiprocessing:跨平台多线程模块 # process_test.py文件,在交互下python process_test.py from multiprocessing import Process import os def run_process(name): print("Run child process %s (%s)..." % (name, os.getpid())) if __name__ == "__main__": print("Parent process %s." % os.getpid()) p = Process(target = run_process, args = ("test",)) print("Child process will start.") p.start() p.join() # join()方法可以等待子进程结束后再继续往下运行,用于进程间的同步 print("Child process end.")
# 结果输出:
Parent process 28340.
Child process will start.
Run child process test (31152)...
Child process end.
# Pool:用进程池批量创建子进程 # process.py文件,交互下python process.py from multiprocessing import Pool import os, time, random def long_time_task(name): print('Run task %s (%s)...' % (name, os.getpid())) start = time.time() time.sleep(random.random() * 3) end = time.time() print('Task %s runs %0.2f seconds.' % (name, (end - start))) if __name__=='__main__': print('Parent process %s.' % os.getpid()) p = Pool(4) for i in range(5): p.apply_async(long_time_task, args=(i,)) print('Waiting for all subprocesses done...') p.close() p.join() print('All subprocesses done.')
# 结果输出:
Parent process 31576.
Waiting for all subprocesses done...
Run task 0 (20416)...
Run task 1 (15900)...
Run task 2 (24716)...
Run task 3 (31148)...
Task 2 runs 0.72 seconds.
Run task 4 (24716)...
Task 4 runs 1.03 seconds.
Task 3 runs 1.82 seconds.
Task 1 runs 2.73 seconds.
Task 0 runs 2.82 seconds.
All subprocesses done.
3.子进程
# subprocess模块:启动一个子进程,控制其输入和输出 # subprocess_test.py文件,注:文件名不要和模块名相同,否则报错 import subprocess print("$ nslookup www.python.org") r = subprocess.call(["nslookup", "www.python.org"]) print("Exit code:", r)
# 结果输出:
$ nslookup www.python.org
服务器: cache-a.guangzhou.gd.cn
Address: 202.96.128.86
非权威应答:
名称: www.python.org
Addresses: 2a04:4e42:1a::223
151.101.72.223
Exit code: 0
# 子进程需要输入,通过communicate()方法 import subprocess print("$ nslookup") p = subprocess.Popen(["nslookup"], stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE) output, err = p.communicate(b"set q = mx\npython.org\nexit\n") print(output.decode("gbk")) print("Exit code:", p.returncode)
# 结果输出:
$ nslookup
默认服务器: cache-a.guangzhou.gd.cn
Address: 202.96.128.86
> Unrecognized command: set q = mx
> 服务器: cache-a.guangzhou.gd.cn
Address: 202.96.128.86
名称: python.org
Address: 138.197.63.241
>
Exit code: 0
4.进程间通信
# 在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据 # queue_test.py文件,交互下python queue_test.py from multiprocessing import Process, Queue import os, time, random def write(q): print("Process to write:%s" % os.getpid()) for value in ["W", "I", "L", "L", "A", "R", "D"]: print("Put %s to queue..." % value) q.put(value) time.sleep(random.random()) def read(q): print("Process to read:%s" % os.getpid()) while True: value = q.get(True) print("Get %s from queue." % value) if __name__ == "__main__": # 父进程创建Queue,并传给各个子进程 q = Queue() pw = Process(target = write, args = (q,)) pr = Process(target = read, args = (q,)) # 启动子进程pw,写入 pw.start() # 启动子进程pr,读取 pr.start() # 等待pw结束 pw.join() # pr进程是死循环,无法等待其结束,需要强行终止 pr.terminate()
# 结果输出:
Process to write:15720
Process to read:21524
Put W to queue...
Get W from queue.
Put I to queue...
Get I from queue.
Put L to queue...
Get L from queue.
Put L to queue...
Get L from queue.
Put A to queue...
Get A from queue.
Put R to queue...
Get R from queue.
Put D to queue...
Get D from queue.
5.多线程
# 线程库:_thread和threading # 启动一个线程:即把一个函数传入并创建一个Thread实例,然后调用start()开始执行 # 任何进程默认启动一个线程,该线程称为主线程,主线程可以启动新的线程 # current_thread()函数:返回当前线程的实例; # 主线程实例名字:MainThread; # 子线程名字的创建时指定,如果不指定,则自动给线程命名为Thread-1、Thread-2... import time, threading def loop(): print("Thread %s is running..." % threading.current_thread().name) n = 0 while n < 5: n = n + 1 print("Thread %s >>> %s" % (threading.current_thread().name, n)) time.sleep(1) print("Thread %s ended." % threading.current_thread().name) print("Thread %s is running..." % threading.current_thread().name) thread1 = threading.Thread(target = loop, name = "LoopThread") thread1.start() thread1.join() print("Thread %s ended." % threading.current_thread().name)
# 结果输出:
Thread MainThread is running...
Thread LoopThread is running...
Thread LoopThread >>> 1
Thread LoopThread >>> 2
Thread LoopThread >>> 3
Thread LoopThread >>> 4
Thread LoopThread >>> 5
Thread LoopThread ended.
Thread MainThread ended.
6.Lock
# 多进程:同一个变量,各自有一份拷贝存在于每个进程中,互不影响; # 多线程:所有变量由所有线程共享,任何一个变量可以被任何一个线程修改; # 多线程同时操作一个变量 # 多运行几次,发现结果不为0 import time, threading balance = 0 def change_it(n): global balance balance = balance + n balance = balance - n def run_thread(n): # 线程交替执行,balance结果不一定为0 for i in range(2000000): change_it(n) thread1 = threading.Thread(target = run_thread, args = (5,)) thread2 = threading.Thread(target = run_thread, args = (8,)) thread1.start() thread2.start() thread1.join() thread2.join() print(balance) # 结果输出: # 5(各自不同)
# 确保balance计算正确,需要给change_it()上一把锁 # 当线程开始执行change_it()时,该线程获得锁,其他线程不能同时执行change_it(), # 只能等待,直到锁被释放,获得该锁后才能改; # 通过threading.Lock()创建锁 import time, threading balance = 0 lock = threading.Lock() def change_it(n): global balance balance = balance + n balance = balance - n def run_thread(n): for i in range(2000000): lock.acquire() try: change_it(n) finally: # 释放锁 lock.release() thread1 = threading.Thread(target = run_thread, args = (5,)) thread2 = threading.Thread(target = run_thread, args = (8,)) thread1.start() thread2.start() thread1.join() thread2.join() print(balance) # 结果输出: # 0
7.ThreadLocal
# 多线程环境下,每个线程有自己的数据; # 一个线程使用自己的局部变量比使用全局变量好; import threading # 创建全局ThreadLocal对象 local_school = threading.local() def process_student(): # 获取当前线程关联的student std = local_school.student print("Hello,%s (in %s)" % (std, threading.current_thread().name)) def process_thread(name): # 绑定ThreadLocal的student local_school.student = name process_student() thread1 = threading.Thread(target = process_thread, args = ("Willard",), name = "Thread-1") thread2 = threading.Thread(target = process_thread, args = ("WenYu",), name = "Thread-2") thread1.start() thread2.start() thread1.join() thread2.join()
# 结果输出:
# Hello,Willard (in Thread-1)
# Hello,WenYu (in Thread-2)
8.进程VS线程
# 进程和线程优缺点: # 1.要实现多任务,会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务, # 在多任务环境下,通常是一个Master,多个Worker; # a.如果使用多进程实现Master-Worker,主进程即Master,其他进程即Worker; # b.如果使用多线程实现Master-Worker,主线程即Master,其他线程即Worker; # 2.多进程优点:稳定性高,一个子进程崩溃不会影响主进程和其他子进程; # 3.多进程缺点:创建进程的代价大,操作系统能同时运行的进程数有限; # 4.多线程缺点:任何一个线程崩溃,可能直接造成整个进程崩溃; # 线程切换: # 1.依次完成任务的方式称为单任务模型,或批处理任务模型; # 2.任务1先做n分钟,切换到任务2做n分钟,再切换到任务3做n分钟,依此类推,称为多任务模型; # 计算密集型 VS IO密集型 # 1.计算密集型任务:要进行大量的计算,消耗CPU资源,如:对视频进行高清解码等; # 2.IO密集型任务:涉及到网络、磁盘IO的任务,均为IO密集型任务; # 3.IO密集型任务消耗CPU少,大部分时间在等待IO操作完成; # 异步IO # 1.事件驱动模型:用单进程单线程模型来执行多任务; # 2.Python语言中,单线程的异步编程模型称为协程;
9.分布式进程
""" 实例: 有一个通过Queue通信的多进程程序在同一机器上运行,但现在处理任务的进程任务繁重, 希望把发送任务的进程和处理任务的进程发布到两台机器上; """ # task_master_test.py # 交互环境中:python task_master_test.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列 task_queue = queue.Queue() # 接收结果的队列 result_queue = queue.Queue() def return_task_queue(): global task_queue return task_queue def return_result_queue(): global task_queue return task_queue # 从BaseManager继承的QueueManager class QueueManager(BaseManager): pass if __name__ == "__main__": # 把两个Queue注册到网络上,callable参数关联Queue对象 QueueManager.register("get_task_queue", callable = return_task_queue) QueueManager.register("get_result_queue", callable = return_result_queue) # 绑定端口5000,设置验证码"Willard" manager = QueueManager(address = ("127.0.0.1", 5000), authkey = b"Willard") # 启动Queue manager.start() # 获得通过网络访问的Queue对象 task = manager.get_task_queue() result = manager.get_result_queue() # 放任务进去 for i in range(10): n = random.randint(0, 10000) print("Put task %d..." % n) task.put(n) # 从result队列读取结果 print("Try get results...") for i in range(10): r = result.get(timeout = 10) print("Result:%s" % r) # 关闭 manager.shutdown() print("Master Exit.")
# task_worker_test.py文件 # 交互环境python task_worker_test.py import time, sys, queue from multiprocessing.managers import BaseManager # 创建QueueManager class QueueManager(BaseManager): pass QueueManager.register("get_task_queue") QueueManager.register("get_result_queue") # 连接到服务器 server_address = "127.0.0.1" print("Connect to server %s..." % server_address) # 端口和验证码 m = QueueManager(address = (server_address, 5000), authkey = b"Willard") # 网络连接 m.connect() # 获取Queue对象 task = m.get_task_queue() result = m.get_result_queue() # 从task队列取任务,把结果写入result队列 for i in range(10): try: n = task.get(timeout = 1) print("Run task %d * %d..." % (n, n)) r = "%d * %d = %d" % (n, n, n * n) time.sleep(1) result.put(r) except Queue.Empty: print("Task queue is empty.") print("Worker Exit.")
总结
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!
加载全部内容