亲宝软件园·资讯

展开

图论数据结构霍夫曼树及其编码

威斯布鲁克.猩猩 人气:0

霍夫曼树

一、基本介绍

二、霍夫曼树几个重要概念和举例说明

 构成霍夫曼树的步骤

举例:以arr = {1  3  6  7  8   13   29} 

public class HuffmanTree {
	public static void main(String[] args) {
		int[] arr = { 13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		preOrder(root);
	}
	// 编写一个前序遍历的方法
	public static void preOrder(Node root) {
		if (root != null) {
			root.preOrder();
		} else {
			System.out.println("树是空树,无法遍历~~");
		}
	}
	// 创建赫夫曼树的方法
	/**
	 * @param arr 需要创建成霍夫曼树的数组
	 * @return 创建好后的霍夫曼树的root节点
	 */
	public static Node createHuffmanTree(int[] arr) {
		// 第一步为了操作方便
		// 1.遍历 arr 数组
		// 2.将 arr 的每个元素构成一个Node
		// 3.将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
			nodes.add(new Node(value));
		}
		while (nodes.size() > 1) {
			// 排序从小到大
			Collections.sort(nodes);
			System.out.println("nodes = " + nodes); 
			// 取出根节点权值最小的两颗二叉树
			//注意:如果是从大到小排列的:就应该取倒数第一个和倒数第二个
			// (1) 取出权值最小的节点(二叉树)
			Node leftNode = nodes.get(0);
			// (2) 取出权值第二小的节点(二叉树)
			Node rightNode = nodes.get(1);
			// (3) 构建一颗新的二叉树
			Node parent = new Node(leftNode.value + rightNode.value);
			parent.left = leftNode;
			parent.right = rightNode;
			// (4) 从ArrayList删除处理过的二叉树
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			// (5) 将parent加入到nodes
			nodes.add(parent);
		}
		// 返回赫夫曼树的root节点
		return nodes.get(0);
	}
}
//创建节点类
//为了让Node对象支持排序Collections集合排序
//让Node实现Comparable接口
class Node implements Comparable<Node> {
	int value;// 节点权值
	Node left;// 指向左子节点
	Node right;// 指向右子节点
 
	public Node(int value) {
		this.value = value;
	}
	// 写一个前序遍历
	public void preOrder() {
		System.out.println(this);
		if (this.left != null) {
			this.left.preOrder();
		}
		if (this.right != null) {
			this.right.preOrder();
		}
	}
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}
	@Override
	public int compareTo(Node o) {
		// 表示从小到大排列
		return this.value - o.value;
	}
}

霍夫曼编码

一、基本介绍

二、原理剖析

 6)说明:

原来长度是359,压缩了(359 - 133) / 359 = 62.9%

此编码满足前缀编码,即字符的编码都不能是其他字符编码的前缀。不会造成匹配的多义性;

霍夫曼编码是无损的压缩处理方案

注意:

霍夫曼编码压缩文件注意事项

1)如果文件本身就是经过压缩处理的,那么使用赫夫曼编码在压缩效率不会有明显变化,比如视频,ppt等等文件

2)赫夫曼编码是按字节来处理的,因此可以处理所有的文件(二进制文件、文本文件)

3)如果一个文件中的内容,重复的数据不多,压缩效果也不会很明显。

加载全部内容

相关教程
猜你喜欢
用户评论