亲宝软件园·资讯

展开

Python Opencv 图像处理

Rainbowman 0 人气:0

opencv图像处理(深度学习中常用的)

改变色彩空间: cv.cvtColor()

cv.cvtColor(img, flag)

常用的flag有:cv.COLOR_BGR2GRAY (BGR->GRAY)、cv.COLOR_BGR2HSV

img = cv.imread(r'E:\0_postgraduate\test.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('img', img)
cv.imshow('img_gray', gray)
k = cv.waitKey(0)
if k & 0xFF == ord('q'):
    cv.destroyAllWindows()

我们可以看看flag都有哪些:

flags = [i for i in dir(cv) if i.startswith('COLOR_')]
print( flags )

改变图像大小:cv.resize()

cv.resize(img, (width, height))

img = cv.imread(r'E:\0_postgraduate\test.jpg')
img_resize = cv.resize(img, (500, 600))
cv.imshow('img shape: {} x {}'.format(img.shape[1], img.shape[0]), img)
cv.imshow('img_resize shape: {} x {}'.format(img_resize.shape[1], img_resize.shape[0]), img_resize)
k = cv.waitKey(0)
if k & 0xFF == ord('q'):
    cv.destroyAllWindows()

比如某些网络要求输入的图像必须是固定大小的:256 x 256这么大的,这时就可以用cv.resize()对大小不一的图像进行缩放。

二维卷积操作

cv.filter2D()+轨迹条动态控制图像参数:cv.createTrackbar()、cv.getTrackbarPos()

卷积操作是什么这里就不再介绍了。

cv.filter2D(img, -1, kernel)

而至于cv.createTrackbar()、cv.getTrackbarPos(),这两个函数可以很方便的动态调节图像的参数,很直观地看到调节的效果:

cv.createTrackbar()

第一个参数是轨迹栏名称

第二个参数是它所属的窗口名称,

第三个参数是默认值,

第四个参数是最大值,

第五个参数是执行的回调函数每次轨迹栏值都会发生变化,即每次滑动轨迹条时都会调用该参数。

cv.getTrackbarPos()

第一个参数是滑动条名字,

第二个时所在窗口,

返回值是滑动条的数值

# cv.createTrackbar() 和 cv.getTrackbarPos()测试

def nothing(*arg):
    pass

img = cv.imread(r'E:\0_postgraduate\test.jpg')
img_original = img
cv.namedWindow('image_test')
cv.createTrackbar('kernel_width', 'image_test', 1, 30, nothing)
cv.createTrackbar('kernel_height', 'image_test', 1, 30, nothing)
while 1:
    w = cv.getTrackbarPos('kernel_width', 'image_test')
    h = cv.getTrackbarPos('kernel_height', 'image_test')
    print('w: {} h: {}'.format(w, h))
    if(w!=0 and h!=0):
        kernel = np.ones((w, h), np.float32)/(w*h)
        img = cv.filter2D(img_original, -1, kernel)
        cv.imshow('image_test', img)
    else:
        cv.imshow('image_test', img_original)
    k = cv.waitKey(5)
    if k & 0xFF == ord('q'):
        break
cv.destroyAllWindows()
    

常用模糊

常用的模糊有平均化模糊:cv.blur()和高斯模糊:cv.GaussianBlur()

(1) cv.blur()

平均化模糊cv.blur()就是让原始图像与一个全1的卷积核做卷积,然后将得到的值除以卷积核中像素的总个数,这么说太绕了,直接上图:

比如我选的卷积核为3x3大小,则原始图像要与如下的卷积核做卷积:

cv.blur(img, (weight, height))

(2) cv.GaussianBlur()

高斯模糊是在平均化模糊基础上的改进,考虑了距离对于中心像素的影响:与中心像素距离越近的像素拥有越高的权重,其实超级简单。高斯模糊的原理可以参考:python实现高斯模糊及原理详解

cv.GaussianBlur(img, (weight, height), sigmaX, sigmaY)

注意:

核的宽度和高度,应该是正数和奇数。我们还应该指定X和Y方向的标准偏差,分别为sigmaX和sigmaY。如果只指定sigmaX,sigmaY将被视为与sigmaX相同。如果两者都是零,则根据核大小计算。高斯模糊对去除图像中的高斯噪声非常有效。

img = cv.imread(r'E:\0_postgraduate\test.jpg')
img_blur = cv.blur(img, (5,5))
img_gaussian = cv.GaussianBlur(img, (5,5), 0)
cv.imshow('image_blur', img_blur)
cv.imshow('image_gaussian', img_gaussian)
k = cv.waitKey(0)
if k & 0xFF == ord('q'):
    cv.destroyAllWindows()

加载全部内容

相关教程
猜你喜欢
用户评论