Go 实现Nginx加权轮询
一只小蜗牛 人气:0最近在看一些 getway 相关的资料,发现有关 Nginx 负载均衡的算法有点多,但是有点乱,所以整理下。。。如有不对地方请指出。
一,Nginx 负载均衡的轮询 (round-robin)
在说加权轮询之前我们先来简单的说一下轮询
1. nginx 中的配置
upstream cluster { server 192.168.0.14; server 192.168.0.15; } location / { proxy_set_header X-Real-IP $remote_addr; //返回真实IP proxy_pass http://cluster; //代理指向cluster }
2. 简单介绍
轮询 作为负载均衡中较为基础的算法,他的实现不需要配置额外的参数。简单理解:配置文件中一共配置了 N 台服务器,轮询 算法会遍历服务的节点列表,并按照节点顺序每轮选择一台服务器处理请求,当所有节点遍历一遍后,重新开始
3. 特点
轮询 算法中我们不难看出,每台服务器处理请求的数量基本持平,按照请求时间逐一分配,因此只能适用于集群服务器性能相近的情况,平均分配让每台服务器承载量基本持平。但是如果集群服务器性能参差不齐,这样的算法会导致资源分配不合理,造成部分请求阻塞,部分服务器资源浪费。为了解决上述问题,我们将 轮询 算法升级了,引入了 加权轮询 算法,让集群中性能差异较大的服务器也能合理分配资源。达到资源尽量最大化合理利用
4. 实现 (这里使用golang模拟实现)
type RoundRobinBalance struct { curIndex int rss []string } /** * @Author: yang * @Description:添加服务 * @Date: 2021/4/7 15:36 */ func (r *RoundRobinBalance) Add (params ...string) error{ if len(params) == 0 { return errors.New("params len 1 at least") } addr := params[0] r.rss = append(r.rss, addr) return nil } /** * @Author: yang * @Description:轮询获取服务 * @Date: 2021/4/7 15:36 */ func (r *RoundRobinBalance) Next () string { if len(r.rss) == 0 { return "" } lens := len(r.rss) if r.curIndex >= lens { r.curIndex = 0 } curAdd := r.rss[r.curIndex ] r.curIndex = (r.curIndex + 1) % lens return curAdd }
5. 测试
简单调用下方法看看结果
/** * @Author: yang * @Description:测试 * @Date: 2021/4/7 15:36 */ func main(){ rb := new(RoundRobinBalance) rb.Add("127.0.0.1:80") rb.Add("127.0.0.1:81") rb.Add("127.0.0.1:82") rb.Add("127.0.0.1:83") fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) } go run main.go 127.0.0.1:80 127.0.0.1:81 127.0.0.1:82 127.0.0.1:83 127.0.0.1:80 127.0.0.1:81
二,Nginx 负载均衡的加权轮询 (weighted-round-robin)
进入主题
1. nginx 配置
http { upstream cluster { server 192.168.1.2 weight=5; server 192.168.1.3 weight=3; server 192.168.1.4 weight=1; } location / { proxy_set_header X-Real-IP $remote_addr; //返回真实IP proxy_pass http://cluster; //代理指向cluster }
2. 加权算法简介-特点
不同的服务器的配置,部署的应用数量,网络状况等都会导致服务器处理能力会不一样,所以简单的 轮询 算法将不再适用,而引入 了加权轮询 算法:根据服务器不同的处理能力,给每个服务器分配不同的权值,根据不同的权值将不同的服务器分配到对应的服务器上;
请求数量较大时,每个服务处理请求的数量之比会趋向于权重之比。
3. 算法说明
在 Nginx加权轮询算法 中,每个节点都有3个权重的变量
- Weight : 配置的权重,根据配置文件初始化每个服务器节点的权重
- currentWeight : 节点的当前权重,初始化时是配置的权重,随后会一直变更
- effectiveWeight : 有效的权重,初始值为 weight ,通讯过程中发现节点异常,则 -1 ,之后再次选择本节点,调用成功一次则 +1 ,直到恢复到 weight。这个参数可以用于做降权。或者说是你的设置的权限修正。。
Nginx加权轮询算法 的逻辑实现
- 轮询所有节点,计算当前状态下所有的节点的 effectiveWeight 之和 作为 totalWeight;
- 更新每个节点的 currentWeight , currentWeight = currentWeight + effectiveWeight; 选出所有节点 currentWeight 中最大的一个节点作为选中节点;
- 选择中的节点再次更新 currentWeight, currentWeight = currentWeight - totalWeight;
4. 简单举例
注意:实现中不考虑健康检查,即所有的节点都是100%可用的,所以 effectiveWeight 等于 weight
假设:现在有3个节点 {A, B, C} 分别权重为:{4, 2, 1};请求7次
第N次请求 | 请求前 currentWeight | 选中的节点 | 请求后 currentWeight |
---|---|---|---|
1 | [serverA=4, serverB=2, serverC=1] | serverA | [serverA=1, serverB=4, serverC=2] |
2 | [serverA=1, serverB=4, serverC=2] | serverB | [serverA=5, serverB=-1, serverC=3] |
3 | [serverA=5, serverB=-1, serverC=3] | serverA | [serverA=2, serverB=1, serverC=4] |
4 | [serverA=2, serverB=1, serverC=4] | serverA | [serverA=-1, serverB=3, serverC=5] |
5 | [serverA=-1, serverB=3, serverC=5] | serverC | [serverA=3, serverB=5, serverC=-1] |
6 | [serverA=3, serverB=5, serverC=-1] | serverA | [serverA=0, serverB=7, serverC=0] |
7 | [serverA=0, serverB=7, serverC=0] | serverB | [serverA=4, serverB=2, serverC=1] |
totaoWeight = 4 + 2 + 1 = 7
第一次请求: serverA = 4 + 4 = 8 , serverB = 2 + 2 = 4, serverC = 1 + 1 = 2; 最大的是 serverA ; 所以选择 serverA ;然后serverA = 8 - 7 = 1;最后得出:serverA=1, serverB=4, serverC=2
第二次请求: serverA = 1 + 4 = 5; serverB = 4 + 2 = 6 ; serverC = 2 + 1 = 3;最大的是 serverB ; 所以选择 serverB ; 然后 serverB = 6 - 7 = -1 ;最后得出: serverA=5, serverB=-1, serverC=3
以此类推。。。
5. 代码实现
以golang实现下上面的逻辑:
type WeightRoundRobinBalance struct { curIndex int rss []*WeightNode } type WeightNode struct { weight int // 配置的权重,即在配置文件或初始化时约定好的每个节点的权重 currentWeight int //节点当前权重,会一直变化 effectiveWeight int //有效权重,初始值为weight, 通讯过程中发现节点异常,则-1 ,之后再次选取本节点,调用成功一次则+1,直达恢复到weight 。 用于健康检查,处理异常节点,降低其权重。 addr string // 服务器addr } /** * @Author: yang * @Description:添加服务 * @Date: 2021/4/7 15:36 */ func (r *WeightRoundRobinBalance) Add (params ...string) error{ if len(params) != 2{ return errors.New("params len need 2") } // @Todo 获取值 addr := params[0] parInt, err := strconv.ParseInt(params[1], 10, 64) if err != nil { return err } node := &WeightNode{ weight: int(parInt), effectiveWeight: int(parInt), // 初始化時有效权重 = 配置权重值 currentWeight: int(parInt), // 初始化時当前权重 = 配置权重值 addr: addr, } r.rss = append(r.rss, node) return nil } /** * @Author: yang * @Description:轮询获取服务 * @Date: 2021/4/7 15:36 */ func (r *WeightRoundRobinBalance) Next () string { // @Todo 没有服务 if len(r.rss) == 0 { return "" } totalWeight := 0 var maxWeightNode *WeightNode for key , node := range r.rss { // @Todo 计算当前状态下所有节点的effectiveWeight之和totalWeight totalWeight += node.effectiveWeight // @Todo 计算currentWeight node.currentWeight += node.effectiveWeight // @Todo 寻找权重最大的 if maxWeightNode == nil || maxWeightNode.currentWeight < node.currentWeight { maxWeightNode = node r.curIndex = key } } // @Todo 更新选中节点的currentWeight maxWeightNode.currentWeight -= totalWeight // @Todo 返回addr return maxWeightNode.addr }
6. 测试验证
/** * @Author: yang * @Description:测试 * @Date: 2021/4/7 15:36 */ func main(){ rb := new(WeightRoundRobinBalance) rb.Add("127.0.0.1:80", "4") rb.Add("127.0.0.1:81", "2") rb.Add("127.0.0.1:82", "1") fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) fmt.Println(rb.Next()) }
执行下看下结果:
run main.go
127.0.0.1:80
127.0.0.1:81
127.0.0.1:80
127.0.0.1:80
127.0.0.1:82
127.0.0.1:80
127.0.0.1:81
加载全部内容