python迭代器、生成器、装饰器
网民余某人 人气:0迭代器
聊迭代器前我们要先清楚迭代的概念:通常来讲从一个对象中依次取出数据,这个过程叫做遍历,这个手段称为迭代(重复执行某一段代码块,并将每一次迭代得到的结果作为下一次迭代的初始值)。
可迭代对象(iterable):是指该对象可以被用于for…in…循环,例如:集合,列表,元祖,字典,字符串,迭代器等。
- 在python中如果一个对象实现了 __iter__方法,我们就称之为可迭代对象,可以查看set\list\tuple…等源码内部均实现了__iter__方法
- 如果一个对象未实现__iter__方法,但是对其使用for…in则会抛出TypeError: ‘xxx’ object is not iterable
- 可以通过isinstance(obj,Iterable)来判断对象是否为可迭代对象。如:
from collections.abc import Iterable a: int = 1 print(isinstance(a, Iterable)) # False b: str = "lalalalala" print(isinstance(b, Iterable)) # True c: set = set([1, 2]) print(isinstance(c, Iterable)) # True
我们也可以自己实现__iter__来将一个类实例对象变为可迭代对象:
class MyIterable: def __iter__(self): pass print(isinstance(MyIterable(), Iterable)) # True
迭代器:对可迭代对象进行迭代的方式或容器,并且需要记录当前迭代进行到的位置。
- 在python中如果一个对象同时实现了__iter__和__next__(获取下一个值)方法,那么它就是一个迭代器对象。
- 可以通过内置函数next(iterator)或实例对象的__next__()方法,来获取当前迭代的值
- 迭代器一定是可迭代对象,可迭代对象不一定是迭代器。
- 如果可迭代对象遍历完后继续调用next(),则会抛出:StopIteration异常。
- 自己实现一个迭代器对象:
from collections.abc import Iterator, Iterable class MyIterator: def __init__(self, array_list): self.array_list = array_list self.index = 0 def __iter__(self): return self def __next__(self): if self.index < len(self.array_list): val = self.array_list[self.index] self.index += 1 return val else: raise StopIteration # 父类如果是迭代器,子类也将是迭代器 class MySubIterator(MyIterator): def __init__(self): pass myIterator = MyIterator([1, 2, 3, 4]) # 判断是否为可迭代对象 print(isinstance(myIterator, Iterable)) # True # 判断是否为迭代器 print(isinstance(myIterator, Iterator)) # True # 子类实例化 mySubIterator = MySubIterator() print(isinstance(mySubIterator, Iterator)) # True # 进行迭代 print(next(myIterator)) # 1 print(myIterator.__next__()) # 2 print(next(myIterator)) # 3 print(next(myIterator)) # 4 print(next(myIterator)) # raise StopIteration
迭代器优缺点:
- 优点:迭代器对象表示的是一个数据流,可以在需要时才去调用next来获取一个值;因而本身在内存中始终只保留一个值,对于内存占用小可以存放无限数据流。优于其他容器需要一次将所有元素都存放进内存,如:列表、集合、字典...等
- 缺点:1.无法获取存放的元素长度,除非取完计数。2.取值不灵活,只能向后取值,next()永远返回的是下一个值;无法取出指定值(无法像字典的key,或列表的下标),而且迭代器对象的生命周期是一次性的,元素被迭代完则生命周期结束。
生成器
定义:在Python中,一边循环一边计算的机制,称为生成器:generator;同时生成器对象也是迭代器对象,所以他有迭代器的特性;例如支持for循环、next()方法…等
作用:对象中的元素是按照某种算法推算出来的,在循环的过程中不断推算出后续的元素,这样就不必创建完整的list,从而节省大量的空间。 简单生成器:通过将列表生成式[]改成()即可得到一个生成器对象
# 列表生成式 _list = [i for i in range(10)] print(type(_list)) # <class 'list'> print(_list) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # 生成器 _generator = (i for i in range(10)) print(type(_generator)) # <class 'generator'> print(_generator) # <generator object <genexpr> at 0x7fbcd92c9ba0> # 生成器对象取值 print(_generator.__next__()) # 0 print(next(_generator)) # 1 # 注意从第三个元素开始了! for x in _generator: print(x) # 2,3,4,5,6,7,8,9
因为生成器对象也有迭代器的特性,所以元素迭代完后继续调用next()方法则会引发StopIteration。
函数对象生成器:带yield语句的函数对象的返回值则是个生成器对象。
def gen_generator(): yield 1 def func(): return 1 print(gen_generator(), type(gen_generator())) # <generator object gen_generator at 0x7fe68b2c8b30> <class 'generator'> print(func(), type(func())) # 1 <class 'int'>
他与普通函数返回值有所不同,普通函数运行到return语句则直接返回代码不再执行;而生成器对象会运行到yield后返回,再下次调用时从yield语句后继续执行。如:
注意:yield 一次只会返回一个元素,即使返回的元素是个可迭代对象,也是一次性返回
def gen_generator2(): yield [1, 2, 3] s = gen_generator2() print(next(s)) # [1, 2, 3]
yield生成器高级应用: send()方法,传递值给yield返回(会立即返回!);如果传None,则等同于next(generator)。
借助send我们可以实现一个简单的生产者-消费者模式如:
def consumer(): r = '' while True: n = yield r if not n: return print(f'[CONSUMER] Consuming get params.. ({n})') if n == 3: r = '500 Error' else: r = '200 OK' def produce(c): c.send(None) # 启动生成器 n = 0 while n < 5: n = n + 1 print(f'[PRODUCER] Producing with params.. ({n})') r = c.send(n) # 一旦n有值,则切换到consumer执行 print(f'[PRODUCER] Consumer return : [{r}]') if not r.startswith('200'): print("消费者返回服务异常,则结束生产,并关闭消费者") c.close() # 关闭生成器 break consume = consumer() produce(consume) # [PRODUCER] Producing with params.. (1) # [CONSUMER] Consuming get params.. (1) # [PRODUCER] Consumer return : [200 OK] # [PRODUCER] Producing with params.. (2) # [CONSUMER] Consuming get params.. (2) # [PRODUCER] Consumer return : [200 OK] # [PRODUCER] Producing with params.. (3) # [CONSUMER] Consuming get params.. (3) # [PRODUCER] Consumer return : [500 Error] # 消费者返回服务异常,则结束生产,并关闭消费者
yield from iterable 语法,基本作用为:返回一个生成器对象,提供一个“数据传输的管道”,yield from iterable 是 for item in iterable: yield item的缩写;并且内部帮我们实现了很多异常处理,简化了编码复杂度。 yield 无法获取生成器return的返回值:
def my_generator(n, end_case): for i in range(n): if i == end_case: return f'当 i==`{i}`时,中断程序。' else: yield i g = my_generator(5, 2) # 调用 for _i in g: # for循环不会显式触发异常,故而无法获取到return的值 print(_i) # 输出: # 0 # 1
从上面的例子可以看出,for迭代语句不会显式触发异常,故而无法获取到return的值,迭代到2的时候遇到return语句,隐式的触发了StopIteration异常,就终止迭代了,但是在程序中不会显示出来。
可以通过next()显示的触发StopIteration异常来获取返回值:
def my_generator2(n, end_case): for i in range(n): if i == end_case: return f'当 i==`{i}`时,中断程序。' else: yield i g = my_generator2(5, 2) # 调用 try: print(next(g)) # 0 print(next(g)) # 1 print(next(g)) # 此处要触发end_case了 except StopIteration as exc: print(exc.value) # 当 i==`2`时,中断程序。
使用yield from 可以简化成:
def my_generator3(n, end_case): for i in range(n): if i == end_case: return f'当 i==`{i}`时,中断程序。' else: yield i def wrap_my_generator(generator): # 将my_generator的返回值包装成一个生成器 result = yield from generator yield result g = my_generator3(5, 2) # 调用 for _ in wrap_my_generator(g): print(_) # 输出: # 0 # 1 # 当 i==`2`时,中断程序。
yield from 有以下几个概念名词:
1、调用方:调用委派生成器的客户端(调用方)代码(上文中的wrap_my_generator(g))
2、委托生成器:包含yield from表达式的生成器函数(包装),作用就是提供一个数据传输的管道(上文中的wrap_my_generator)
3、子生成器:yield from后面加的生成器函数对象(上文中的my_generator3的实例对象g)
调用方是通过这个 “包装函数” 来与生成器进行交互的,即“调用方——>委托生成器——>生成器函数”
下面有个例子帮助大家理解(该
加载全部内容