亲宝软件园·资讯

展开

Java中二叉树

来学习的小张 人气:0

一、树形结构

是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

1.1 相关概念

以下概念仅做了解即可

1.2树的表示形式

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子兄弟表示法等等。这里简单的了解其中最常用的孩子兄弟表示法

孩子兄弟表示法代码示例:

class Node {
int value; // 树中存储的数据
Node firstChild; // 第一个孩子引用
Node nextBrother; // 下一个兄弟引用
}

图示:

1.3树的应用:文件系统管理(目录和文件)

二、二叉树

2.1相关概念

一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

二叉树的特点

每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点。

二叉树的子树有左右之分,其子树的次序不能颠倒,因此二叉树是有序树

2.2 二叉树的基本形态

上图给出了几种特殊的二叉树形态。

从左往右依次是:空树、只有根节点的二叉树、节点只有左子树、节点只有右

子树、节点的左右子树均存在,一般二叉树都是由上述基本形态结合而形成的。

2.3 两种特殊的二叉树

满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2k-1 ,则它就是满二叉树。

完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。(另一种解释:如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。 )要注意的是满二叉树是一种特殊的完全二叉树

完全二叉树

非完全二叉树:

非完全二叉树

2.4 二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i-1 (i>0)个结点;
  2. 若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2k-1 (k>=0);
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1;
  4. 具有n个结点的完全二叉树的深度k为log2(n+1) 上取整;
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:

如:假设一棵完全二叉树中总共有1000个节点,则该二叉树中__500___个叶子节点,__500___个非叶子节点,__1___个节点只有左孩子,__0___个只有右孩子。

题解:将该二叉树节点缩小100倍,变为该完全二叉树中总共有10个节点,由性质2可得深度K为:4,前三层共有7个节点,则最后一层有10-7=3个节点,由性质1的第三层有4个节点,其中有2个节点上面有子节点,剩余2个为叶子结点,则该二叉树共有3+2=5个叶子结点,扩大100倍为500个叶子结点,则剩余的就位非叶子结点。有相关分析可知该二叉树有1个节点只有左孩子,0个节点只有右孩子。

2.5 二叉树的存储

二叉树的存储结构分为:顺序存储和类似于链表的链式存储

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}

// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}

2.6 二叉树的基本操作

2.6.1二叉树的遍历

遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。

在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)R(Right subtree)又可解释为根、根的左子树和根的右子树NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历

如上面这张图,

其前序遍历:ABDEHCFG;

中序遍历:DBEHAFCG

后序遍历:DHEBFGCA

2.6.2 二叉树的基本操作

构建一颗二叉树:

代码示例:

class TreeNode{
    public char val;
    public TreeNode left;
    public TreeNode right;

    public TreeNode(char val){
        this.val = val;
    }
 }
public class BinaryTree {
	//创建一个二叉树
    public TreeNode createTree(){
        TreeNode A = new TreeNode('a');
        TreeNode B = new TreeNode('b');
        TreeNode C = new TreeNode('c');
        TreeNode D= new TreeNode('d');
        TreeNode E = new TreeNode('e');
        TreeNode F = new TreeNode('f');
        TreeNode G = new TreeNode('g');
        TreeNode H = new TreeNode('h');
        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        E.right = H;
        C.left = F;
        C.right = G;
        return A;
    }

1. 前序遍历

根–》左–》右

 void preOrderTraversal(TreeNode root){
        if(root == null){
            return;
        }
        System.out.print(root.val + " ");
        preOrderTraversal(root.left);
        preOrderTraversal(root.right);
    }

测试代码:

 public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
        binaryTree.preOrderTraversal(root);//前序遍历
        }

输出结果:

2. 中序遍历

左–》根–》右

 // 中序遍历
    void inOrderTraversal(TreeNode root){
        if(root == null){
            return;
        }
        inOrderTraversal(root.left);
        System.out.print(root.val + " ");
        inOrderTraversal(root.right);
    }

测试代码:

public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
         binaryTree.inOrderTraversal(root);//中序遍历
        }

输出结果:

3. 后序遍历

左–》右–》根

// 后序遍历
    void postOrderTraversal(TreeNode root){
        if(root == null){
            return;
        }
        postOrderTraversal(root.left);
        postOrderTraversal(root.right);
        System.out.print(root.val + " ");
    }

测试代码:

public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
        binaryTree.postOrderTraversal(root);//后序遍历
        }

输出结果:

4. 遍历思路-求结点个数

 static int size = 0;//静态变量
    void getSize1(TreeNode root){
        if(root == null){
            return;
        }
        size++;
        getSize1(root.left);
        getSize1(root.right);
    }

5. 子问题思路-求结点个数

int getSize2(TreeNode root){
        if(root == null){
            return 0;
        }
        return  getSize2(root.left) + getSize2(root.right)+1;
    }

测试代码:

 public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
        binaryTree.getSize1(root);
        System.out.println(BinaryTree.size);
        System.out.println("============");
        System.out.println(binaryTree.getSize2(root));
   }

输出结果:

6. 遍历思路-求叶子结点个数

//遍历这颗二叉树,只要节点的左子树和右子树都是空的,那么就是叶子
    static int leafSize = 0;
    void getLeafSize1(TreeNode root){
        if(root == null){
            return;
        }
        if(root.left == null && root.right == null){
            leafSize++;
        }
        getLeafSize1(root.left);
        getLeafSize1(root.right);
    }

7. 子问题思路-求叶子结点个数

//整棵树的叶子结点 = 左子树叶子 + 右子树叶子
    int getLeafSize2(TreeNode root){
        if(root == null){
            return 0;
        }
        if(root.left == null && root.right == null){
            return 1;
        }
        return  getLeafSize2(root.left) + getLeafSize2(root.right);
    }

测试代码:

public class test01 {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
        binaryTree.getLeafSize1(root);
        System.out.println(BinaryTree.leafSize);//遍历思路-求叶子结点个数
        System.out.println("+++++++++++++");
        //binaryTree.getLeafSize2(root);
        //System.out.println(BinaryTree.leafSize);//子问题思路-求叶子结点个数
        System.out.println(binaryTree.getLeafSize2(root));
  }

输出结果:

8. 子问题思路-求第 k 层结点个数

// 子问题思路-求第 k 层结点个数
    int getKLevelSize(TreeNode root,int k){
        if(root == null){
            return 0;
        }
        if(k == 1){
            return 1;
        }
   return getKLevelSize(root.left,k-1) + getKLevelSize(root.right,k - 1);
    }

测试代码:

public class test01 {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
 		System.out.println(binaryTree.getKLevelSize(root,3));
 }

输出结果:

9. 获取二叉树的高度

int getHeight(TreeNode root){
        if(root == null){
            return  0;
        }
        int leftTree = getHeight(root.left);
        int rightTree = getHeight(root.right);
        return ((leftTree > rightTree) ? leftTree + 1 : rightTree + 1);
    }

测试代码:

public class test01 {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
 		int hight = binaryTree.getHeight(root);
        System.out.println(hight);
 }

输出结果:

10. 查找val所在的节点

查找 val 所在结点,没有找到返回 null;

按照 根 -> 左子树 -> 右子树的顺序进行查找;

一旦找到,立即返回,不需要继续在其他位置查找。

    TreeNode find(TreeNode root, char val){
        if(root == null){
            return null;
        }
        if(root.val == val){
            return root;
        }
       TreeNode ret = find(root.left,val);
        if(ret != null){
            return ret;
        }
        ret = find(root.right,val );
        if(ret != null){
            return ret;
        }
        return null;
    }

测试代码:

public class test01 {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
 		//查找树中得指定val值
       TreeNode ret = binaryTree.find(root,'f');//如果没有找到则显示空指针异常
        System.out.println(ret.val);
 }

输出结果:

11.二叉树的层序遍历

 // 层序遍历
    void levelOrderTraversal(TreeNode root){
        if(root == null){
            return;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()){
           TreeNode top = queue.poll();
            System.out.print(top.val+" ");
            if(top.left != null){
                queue.offer(top.left);
            }
            if (top.right != null){
                queue.offer(top.right);
            }
        }
        System.out.println();
    }

测试代码:

public class test01 {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
 		binaryTree.levelOrderTraversal(root);//层序遍历
 }

输出结果:

12.判断一棵树是不是完全二叉树

// 判断一棵树是不是完全二叉树
    boolean isCompleteTree(TreeNode root){
        if(root == null){
            return true;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()){
            TreeNode top = queue.poll();//弹出一个元素
            if(top != null){
                queue.offer(top.left);
                queue.offer(top.right);
            }else{
                break;
            }
        }
        while (!queue.isEmpty()){
            TreeNode cur = queue.peek();
            if (cur == null){
                queue.poll();
            }else {
                //说明不是完全二叉树
                return false;
            }
        }
        return true;
    }

测试代码:

public class test01 {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
        //判断一棵树是不是完全二叉树
 		System.out.println(binaryTree.isCompleteTree(root)); 
 }

输出结果:

13.非递归实现前序遍历

 //非递归实现
    // 前序遍历
    void preOrderTraversalNor(TreeNode root) {
        if (root == null) {
            return;
        }
        TreeNode cur = root;
        Stack<TreeNode> stack = new Stack<>();
        while (cur != null || !stack.empty()) {
            while (cur != null) {
                stack.push(cur);
                System.out.print(cur.val + " ");
                cur = cur.left;
            }
            TreeNode top = stack.pop();
            cur = top.right;
        }
    }

14.非递归实现中序遍历

 // 中序遍历
    void inOrderTraversalNor(TreeNode root){
        if (root == null) {
            return;
        }
        TreeNode cur = root;
        Stack<TreeNode> stack = new Stack<>();
        while (cur != null || !stack.empty()){
            while (cur != null){
                stack.push(cur);
                cur = cur.left;
            }
            TreeNode top = stack.pop();
            System.out.print(top.val + " ");
            cur = top.right;
        }

    }

15.非递归实现后序遍历

// 后序遍历非递归
    void postOrderTraversalNor(TreeNode root){
        if (root == null) {
            return;
        }
        TreeNode cur = root;
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;//用来指定上一个被打印过的元素
        while (cur != null || !stack.empty()){
            while (cur != null){
                stack.push(cur);
                cur = cur.left;
            }
            cur = stack.peek();
            if(cur.right == null || cur.right == pre ){
                TreeNode popNode = stack.pop();
                System.out.print(popNode.val + " ");
                pre = cur;
                cur = null;
            }else {
                cur = cur.right;
            }
        }
    }

测试代码:

 public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
       // binaryTree.preOrderTraversal(root);//前序遍历
        //System.out.println();
        binaryTree.preOrderTraversalNor(root);//前序遍历非递归
        System.out.println();
        //binaryTree.postOrderTraversal(root);//后序遍历
        //System.out.println();
        binaryTree.postOrderTraversalNor(root);//后序遍历非递归
        System.out.println();
        //binaryTree.inOrderTraversal(root);//中序遍历
        //System.out.println();
        binaryTree.inOrderTraversalNor(root);//中序遍历非递归
        System.out.println();
}

输出结果:前、后、中

以上。

总结

加载全部内容

相关教程
猜你喜欢
用户评论