亲宝软件园·资讯

展开

Python高性能技巧

davlik1 人气:0

1. 易混淆操作

本节对一些 Python 易混淆的操作进行对比。

1.1 有放回随机采样和无放回随机采样

import randomrandom.choices(seq, k=1)  # 长度为k的list,有放回采样random.sample(seq, k)     # 长度为k的list,无放回采样

1.2 lambda 函数的参数

func = lambda y: x + y          # x的值在函数运行时被绑定func = lambda y, x=x: x + y     # x的值在函数定义时被绑定

1.3 copy 和 deepcopy

import copyy = copy.copy(x)      # 只复制最顶层y = copy.deepcopy(x)  # 复制所有嵌套部分

复制和变量别名结合在一起时,容易混淆:

a = [1, 2, [3, 4]]# Alias.b_alias = a  assert b_alias == a and b_alias is a# Shallow copy.b_shallow_copy = a[:] 
assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]# Deep copy.import copyb_deep_copy = copy.deepcopy(a) 
assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]

对别名的修改会影响原变量,(浅)复制中的元素是原列表中元素的别名,而深层复制是递归的进行复制,对深层复制的修改不影响原变量。

1.4 == 和 is

x == y  # 两引用对象是否有相同值x is y  # 两引用是否指向同一对象

1.5 判断类型

type(a) == int      # 忽略面向对象设计中的多态特征isinstance(a, int)  # 考虑了面向对象设计中的多态特征

1.6 字符串搜索

str.find(sub, start=None, end=None); str.rfind(...)     # 如果找不到返回-1str.index(sub, start=None, end=None); 
str.rindex(...)   # 如果找不到抛出ValueError异常

1.7 List 后向索引

这个只是习惯问题,前向索引时下标从0开始,如果反向索引也想从0开始可以使用~。

print(a[-1], a[-2], a[-3])print(a[~0], a[~1], a[~2])

2. C/C++ 用户使用指南

不少 Python 的用户是从以前 C/C++ 迁移过来的,这两种语言在语法、代码风格等方面有些不同,本节简要进行介绍。

2.1 很大的数和很小的数

C/C++ 的习惯是定义一个很大的数字,Python 中有 inf 和 -inf:

a = float('inf')b = float('-inf')

2.2 布尔值

C/C++ 的习惯是使用 0 和非 0 值表示 True 和 False, Python 建议直接使用 True 和 False 表示布尔值。

a = Trueb = False

2.3 判断为空

C/C++ 对空指针判断的习惯是 if (a) 和 if (!a)。Python 对于 None 的判断是:

if x is None:    pass

如果使用 if not x,则会将其他的对象(比如长度为 0 的字符串、列表、元组、字典等)都会被当做 False。

2.4 交换值

C/C++ 的习惯是定义一个临时变量,用来交换值。利用 Python 的 Tuple 操作,可以一步到位。

a, b = b, a

2.5 比较

C/C++ 的习惯是用两个条件。利用 Python 可以一步到位。

if 0 < a < 5:    pass

2.6 类成员的 Set 和 Get

C/C++ 的习惯是把类成员设为 private,通过一系列的 Set 和 Get 函数存取其中的值。在 Python 中虽然也可以通过 @property、@setter、@deleter 设置对应的 Set 和 Get 函数,我们应避免不必要的抽象,这会比直接访问慢 4 - 5 倍。

2.7 函数的输入输出参数

C/C++ 的习惯是把输入输出参数都列为函数的参数,通过指针改变输出参数的值,函数的返回值是执行状态,函数调用方对返回值进行检查,判断是否成功执行。在 Python 中,不需要函数调用方进行返回值检查,函数中遇到特殊情况,直接抛出一个异常。

2.8 读文件

相比 C/C++,Python 读文件要简单很多,打开后的文件是一个可迭代对象,每次返回一行内容。

with open(file_path, 'rt', encoding='utf-8') as f:   for line in f:       
    print(line)       # 末尾的\n会保留

2.9 文件路径拼接

C/C++ 的习惯通常直接用 + 将路径拼接,这很容易出错,Python 中的 os.path.join 会自动根据操作系统不同补充路径之间的 / 或 \ 分隔符:

import osos.path.join('usr', 'lib', 'local')

2.10 解析命令行选项

虽然 Python 中也可以像 C/C++ 一样使用 sys.argv 直接解析命令行选择,但是使用 argparse 下的 ArgumentParser 工具更加方便,功能更加强大。

2.11 调用外部命令

虽然 Python 中也可以像 C/C++ 一样使用 os.system 直接调用外部命令,但是使用 subprocess.check_output 可以自由选择是否执行 Shell,也可以获得外部命令执行结果。

import subprocess# 如果外部命令返回值非0,则抛出subprocess.CalledProcessError异常result = subprocess.check_output(['cmd', 'arg1', 'arg2']).decode('utf-8')  # 同时收集标准输出和标准错误result = subprocess.check_output(['cmd', 'arg1', 'arg2'], stderr=subprocess.STDOUT).decode('utf-8')  # 执行shell命令(管道、重定向等),可以使用shlex.quote()将参数双引号引起来result = subprocess.check_output('grep python | wc > out', shell=True).decode('utf-8')

2.12 不重复造轮子

不要重复造轮子,Python称为batteries included即是指Python提供了许多常见问题的解决方案。

3. 常用工具

3.1 读写 CSV 文件

import csv# 无header的读写with open(name, 'rt', encoding='utf-8', newline='') as f:  # newline=''让Python不将换行统一处理   
for row in csv.reader(f):        
print(row[0], row[1])  # CSV读到的数据都是str类型with open(name, mode='wt') as f:   
f_csv = csv.writer(f)   
f_csv.writerow(['symbol', 'change'])# 有header的读写with open(name, mode='rt', newline='') as f:   
for row in csv.DictReader(f):        
print(row['symbol'], row['change'])with open(name, mode='wt') as f:    
header = ['symbol', 'change']    
f_csv = csv.DictWriter(f, header)    
f_csv.writeheader()    
f_csv.writerow({'symbol': xx, 'change': xx})

注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决

import syscsv.field_size_limit(sys.maxsize)

csv 还可以读以 \t 分割的数据

f = csv.reader(f, delimiter='\t')

3.2 迭代器工具

itertools 中定义了很多迭代器工具,例如子序列工具:

import itertoolsitertools.islice(iterable, start=None, stop, step=None)# islice('ABCDEF', 2, None) -> C, D, E, Fitertools.filterfalse(predicate, iterable)          
# 过滤掉predicate为False的元素# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6itertools.takewhile(predicate, iterable)         
# 当predicate为False时停止迭代# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4itertools.dropwhile(predicate, iterable)           
# 当predicate为False时开始迭代# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1itertools.compress(iterable, selectors)            
# 根据selectors每个元素是True或False进行选择# compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F

序列排序:

sorted(iterable,key=None,reverse=False)

itertools.groupby(iterable,key=None)#按值分组,iterable需要先被排序
#groupby(sorted([1,4,6,4,1]))->(1,iter1),(4,iter4),(6,iter6)

itertools.permutations(iterable,r=None)#排列,返回值是Tuple
#permutations('ABCD',2)->AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC

itertools.combinations(iterable,r=None)#组合,返回值是Tuple
itertools.combinations_with_replacement(...)
#combinations('ABCD',2)->AB,AC,AD,BC,BD,CD

多个序列合并:

itertools.chain(*iterables)#多个序列直接拼接
#chain('ABC','DEF')->A,B,C,D,E,F
importheapq
heapq.merge(*iterables,key=None,reverse=False)#多个序列按顺序拼接
#merge('ABF','CDE')->A,B,C,D,E,F
zip(*iterables)#当最短的序列耗尽时停止,结果只能被消耗一次
itertools.zip_longest(*iterables,fillvalue=None)#当最长的序列耗尽时停止,结果只能被消耗一次

3.3 计数器

计数器可以统计一个可迭代对象中每个元素出现的次数。

importcollections
#创建
collections.Counter(iterable)
#频次
collections.Counter[key]#key出现频次
#返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素
collections.Counter.most_common(n=None)
#插入/更新
collections.Counter.update(iterable)
counter1+counter2;counter1-counter2#counter加减
#检查两个字符串的组成元素是否相同
collections.Counter(list1)==collections.Counter(list2)

3.4 带默认值的 Dict

当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。

importcollections
collections.defaultdict(type)#当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值

3.5 有序 Dict

importcollections
collections.OrderedDict(items=None)#迭代时保留原始插入顺序

4. 高性能编程和调试

4.1 输出错误和警告信息

向标准错误输出信息

importsys
sys.stderr.write('')

输出警告信息

importwarnings
warnings.warn(message,category=UserWarning)
#category的取值有DeprecationWarning,SyntaxWarning,RuntimeWarning,ResourceWarning,FutureWarning

控制警告消息的输出

$python-Wall#输出所有警告,等同于设置warnings.simplefilter('always')
$python-Wignore#忽略所有警告,等同于设置warnings.simplefilter('ignore')
$python-Werror#将所有警告转换为异常,等同于设置warnings.simplefilter('error')

4.2 代码中测试

有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:

#在代码中的debug部分
if__debug__:
pass

一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:

$python-0main.py

4.3 代码风格检查

使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误

pylintmain.py

4.4 代码耗时

耗时测试

$python-mcProfilemain.py

测试某代码块耗时

#代码块耗时定义
fromcontextlibimportcontextmanager
fromtimeimportperf_counter
@contextmanager
deftimeblock(label):
tic=perf_counter()
try:
yield
finally:
toc=perf_counter()
print('%s:%s'%(label,toc-tic))
#代码块耗时测试
withtimeblock('counting'):
pass

代码耗时优化的一些原则

5. Python 其他技巧

5.1 argmin 和 argmax

items=[2,1,3,4]
argmin=min(range(len(items)),key=items.__getitem__)

argmax同理。

5.2 转置二维列表

A=[['a11','a12'],['a21','a22'],['a31','a32']]
A_transpose=list(zip(*A))#listoftuple
A_transpose=list(list(col)forcolinzip(*A))#listoflist

5.3 一维列表展开为二维列表

A=[1,2,3,4,5,6]

#Preferred.
list(zip(*[iter(A)]*2))

文章来源:https://zhuanlan.zhihu.com/p/48293468

加载全部内容

相关教程
猜你喜欢
用户评论