亲宝软件园·资讯

展开

OpenCV提取图像数据 OpenCV提取图像中圆线上的数据具体流程

翟天保Steven 人气:0
想了解OpenCV提取图像中圆线上的数据具体流程的相关内容吗,翟天保Steven在本文为您仔细讲解OpenCV提取图像数据的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:OpenCV提取图像数据,OpenCV提取图像圆线数据,下面大家一起来学习吧。

需求说明

在对图像进行处理时,经常会有这类需求:客户想要提取出图像中某条直线、圆线或者ROI区域内的感兴趣数据,进行重点关注。该需求在图像检测领域尤其常见。ROI区域一般搭配Rect即可完成提取,直线和圆线数据的提取没有现成的函数,需要自行实现。

直线的提取见:

OpenCV获取图像中直线上的数据具体流程

而圆线的提取则是本文要将的内容,对圆线而言,将线上某点作为起点,沿顺时针或逆时针方向依次提取感兴趣数据,可放置在容器中。那么如何快速提取呢?本文提供了一种比较简单的思路,应用窗口模板,在窗口中快速找到下一可前进点的位置,步进然后再找下个点,形成路径追踪,进而实现整圈圆线数据的提取。

具体流程

1)初始化。设置路径追踪窗口尺寸size为3,创建path作为行进路径,p点作为起点,c用来存放目标数据点。

cv::Mat c;
int size = 3;
cv::Mat path = mask.clone();
Point p = Point(center.x + radius, center.y);

2)将起点放置在c中,将path中的起点值置0,表示该点已经走过。

c.push_back(src.at<uchar>(p.y, p.x));
path.at<uchar>(p.y, p.x) = 0;

3)用WinDataNum函数判断当前点的窗口内有几个可前进点,若无则说明路径封死或者完成路径,wn值表示可前进点的个数。

int wn = WinDataNum(path, p, size);

4)窗口内遍历,查看是否有可前进路径,若找到,则将当前点信息刷新为此点,并将标记符find设为true,find的意义是快速中断遍历,用来提速。

int t = size / 2;
bool find = false;
for (int i = p.y - t; i <= p.y + t; ++i)
{
	uchar *g = path.ptr<uchar>(i);
	for (int j = p.x - t; j <= p.x + t; ++j)
	{
		if (g[j] == 255)
		{
			p.x = j;
			p.y = i;
			find = true;
			break;
		}
	}
	if (find)
		break;
}

5)若找到了点,即find为true,则将该点的数据存放在c中,path中置0,并以该点为中心搜索窗口内可前进路径。

if (find)
{
	c.push_back(src.at<uchar>(p.y, p.x));
	path.at<uchar>(p.y, p.x) = 0;
	wn = WinDataNum(path, p, size);
}
else
	break;

6)若wn为0了,则说明路径封死或者完成路径了,跳出循环,函数执行完毕。 

while (wn)
{
	int t = size / 2;
	bool find = false;
	for (int i = p.y - t; i <= p.y + t; ++i)
	{
		uchar *g = path.ptr<uchar>(i);
		for (int j = p.x - t; j <= p.x + t; ++j)
		{
			if (g[j] == 255)
			{
				p.x = j;
				p.y = i;
				find = true;
				break;
			}
		}
		if (find)
			break;
	}
	if (find)
	{
		c.push_back(src.at<uchar>(p.y, p.x));
		path.at<uchar>(p.y, p.x) = 0;
		wn = WinDataNum(path, p, size);
	}
	else
		break;
 
}

功能函数

// 获取圆圈上的数据,逆时针存储,起点在中心同行最右侧数据
cv::Mat getCircleData(cv::Mat src, cv::Mat mask, cv::Point center, int radius)
{
	cv::Mat c;
	int size = 3;
	cv::Mat path = mask.clone();
	Point p = Point(center.x + radius, center.y);
	c.push_back(src.at<uchar>(p.y, p.x));
	path.at<uchar>(p.y, p.x) = 0;
	int wn = WinDataNum(path, p, size);
	while (wn)
	{
		int t = size / 2;
		bool find = false;
		for (int i = p.y - t; i <= p.y + t; ++i)
		{
			uchar *g = path.ptr<uchar>(i);
			for (int j = p.x - t; j <= p.x + t; ++j)
			{
				if (g[j] == 255)
				{
					p.x = j;
					p.y = i;
					find = true;
					break;
				}
			}
			if (find)
				break;
		}
		if (find)
		{
			c.push_back(src.at<uchar>(p.y, p.x));
			path.at<uchar>(p.y, p.x) = 0;
			wn = WinDataNum(path, p, size);
		}
		else
			break;
 
	}
	return c;
}
// 获取窗口内的有效数据个数
int WinDataNum(cv::Mat path, cv::Point p, int size)
{
	int number = 0;
	int t = size / 2;
	for (int i = p.y - t; i <= p.y + t; ++i)
	{
		uchar *g = path.ptr<uchar>(i);
		for (int j = p.x - t; j <= p.x + t; ++j)
		{
			if (g[j] == 255)
				number++;
		}
	}
	return number;
}

C++测试代码

#include <iostream>
#include <opencv2/opencv.hpp>
#include <string>
 
using namespace std;
using namespace cv;
 
cv::Mat getCircleData(cv::Mat src, cv::Mat mask, cv::Point center, int radius);
int WinDataNum(cv::Mat path, cv::Point p, int size);
 
int main()
{
	cv::Mat src = imread("test.jpg", 0);
	cv::Mat mask = cv::Mat::zeros(src.size(), CV_8UC1);
	cv::Point center = cv::Point(src.cols / 2, src.rows / 2);
	int radius = min(src.cols, src.rows) / 2 - 10;
	circle(mask, center, radius, Scalar(255), 1, 8);
	cv::Mat c = getCircleData(src, mask, center, radius);
	src.setTo(0, mask == 0);
	imshow("src", src);
	imshow("mask", mask);
	waitKey(0);
 
	return 0;
}
 
// 获取圆圈上的数据,逆时针存储,起点在中心同行最右侧数据
cv::Mat getCircleData(cv::Mat src, cv::Mat mask, cv::Point center, int radius)
{
	cv::Mat c;
	int size = 3;
	cv::Mat path = mask.clone();
	Point p = Point(center.x + radius, center.y);
	c.push_back(src.at<uchar>(p.y, p.x));
	path.at<uchar>(p.y, p.x) = 0;
	int wn = WinDataNum(path, p, size);
	while (wn)
	{
		int t = size / 2;
		bool find = false;
		for (int i = p.y - t; i <= p.y + t; ++i)
		{
			uchar *g = path.ptr<uchar>(i);
			for (int j = p.x - t; j <= p.x + t; ++j)
			{
				if (g[j] == 255)
				{
					p.x = j;
					p.y = i;
					find = true;
					break;
				}
			}
			if (find)
				break;
		}
		if (find)
		{
			c.push_back(src.at<uchar>(p.y, p.x));
			path.at<uchar>(p.y, p.x) = 0;
			wn = WinDataNum(path, p, size);
		}
		else
			break;
 
	}
	return c;
}
 
// 获取窗口内的有效数据个数
int WinDataNum(cv::Mat path, cv::Point p, int size)
{
	int number = 0;
	int t = size / 2;
	for (int i = p.y - t; i <= p.y + t; ++i)
	{
		uchar *g = path.ptr<uchar>(i);
		for (int j = p.x - t; j <= p.x + t; ++j)
		{
			if (g[j] == 255)
				number++;
		}
	}
	return number;
}

测试效果

图1 原图

图2 掩膜内图像

如图1图2所示,掩膜内的图像数据就是我们要提取的目标。

图3 放大后数据搜索路径

图3放大后可以看出,起点是230,之后的数据是230、231、236、232、234、146等等,再看c容器中的数据。

图4 容器内数据

对比完开头,再看结尾,如图3所示,是234、234、231、234、234,然后就是起点230,查看容器。

图5 容器内数据

这样有的小伙伴可能觉得中间会不会有数据错误呢,很简单,打开VS复制代码后,搭配ImageWatch插件,debug调试打断点观察path矩阵,看看它的255数据是不是按预想的路径消失,如果是则说明扔的数据也没有问题。

总结

本文提供的只是一个简单思路,有一定局限性。比如该方法在圆线宽为1时效果最佳,若线宽大了就不能用窗口简单判断了;另外,起点在右侧时是逆时针获取数据,起点在左侧时是顺时针获取数据,如果想统一标准的话,最好加上起点的位置判断,然后决定是否将c的数据翻转。至于运行速度方面,3000*3000的图像矩阵中运行基本为0ms,毕竟只是提取了一条圆线而已。

加载全部内容

相关教程
猜你喜欢
用户评论