python数据可视化 Matlab、Python为工具解析数据可视化之美
CaiBirdHu 人气:0想了解Matlab、Python为工具解析数据可视化之美的相关内容吗,CaiBirdHu在本文为您仔细讲解python数据可视化的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python数据可视化之美,python数据可视化,下面大家一起来学习吧。
在我们科研、工作中,将数据完美展现出来尤为重要。
数据可视化是以数据为视角,探索世界。我们真正想要的是 — 数据视觉,以数据为工具,以可视化为手段,目的是描述真实,探索世界。
下面介绍一些数据可视化的作品(包含部分代码),主要是地学领域,可迁移至其他学科。
Example 1 :散点图、密度图(Python)
import numpy as np import matplotlib.pyplot as plt # 创建随机数 n = 100000 x = np.random.randn(n) y = (1.5 * x) + np.random.randn(n) fig1 = plt.figure() plt.plot(x,y,'.r') plt.xlabel('x') plt.ylabel('y') plt.savefig('2D_1V1.png',dpi=600) nbins = 200 H, xedges, yedges = np.histogram2d(x,y,bins=nbins) # H needs to be rotated and flipped H = np.rot90(H) H = np.flipud(H) # 将zeros mask Hmasked = np.ma.masked_where(H==0,H) # Plot 2D histogram using pcolor fig2 = plt.figure() plt.pcolormesh(xedges,yedges,Hmasked) plt.xlabel('x') plt.ylabel('y') cbar = plt.colorbar() cbar.ax.set_ylabel('Counts') plt.savefig('2D_2V1.png',dpi=600) plt.show()
Example 2 :双Y轴(Python)
import csv import pandas as pd import matplotlib.pyplot as plt from datetime import datetime data=pd.read_csv('LOBO0010-2020112014010.tsv',sep='\t') time=data['date [AST]'] sal=data['salinity'] tem=data['temperature [C]'] print(sal) DAT = [] for row in time: DAT.append(datetime.strptime(row,"%Y-%m-%d %H:%M:%S")) #create figure fig, ax =plt.subplots(1) # Plot y1 vs x in blue on the left vertical axis. plt.xlabel("Date [AST]") plt.ylabel("Temperature [C]", color="b") plt.tick_params(axis="y", labelcolor="b") plt.plot(DAT, tem, "b-", linewidth=1) plt.title("Temperature and Salinity from LOBO (Halifax, Canada)") fig.autofmt_xdate(rotation=50) # Plot y2 vs x in red on the right vertical axis. plt.twinx() plt.ylabel("Salinity", color="r") plt.tick_params(axis="y", labelcolor="r") plt.plot(DAT, sal, "r-", linewidth=1) #To save your graph plt.savefig('saltandtemp_V1.png' ,bbox_inches='tight') plt.show()
Example 3:拟合曲线(Python)
import csv import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt import scipy.signal as signal data=pd.read_csv('LOBO0010-20201122130720.tsv',sep='\t') time=data['date [AST]'] temp=data['temperature [C]'] datestart = datetime.strptime(time[1],"%Y-%m-%d %H:%M:%S") DATE,decday = [],[] for row in time: daterow = datetime.strptime(row,"%Y-%m-%d %H:%M:%S") DATE.append(daterow) decday.append((daterow-datestart).total_seconds()/(3600*24)) # First, design the Buterworth filter N = 2 # Filter order Wn = 0.01 # Cutoff frequency B, A = signal.butter(N, Wn, output='ba') # Second, apply the filter tempf = signal.filtfilt(B,A, temp) # Make plots fig = plt.figure() ax1 = fig.add_subplot(211) plt.plot(decday,temp, 'b-') plt.plot(decday,tempf, 'r-',linewidth=2) plt.ylabel("Temperature (oC)") plt.legend(['Original','Filtered']) plt.title("Temperature from LOBO (Halifax, Canada)") ax1.axes.get_xaxis().set_visible(False) ax1 = fig.add_subplot(212) plt.plot(decday,temp-tempf, 'b-') plt.ylabel("Temperature (oC)") plt.xlabel("Date") plt.legend(['Residuals']) plt.savefig('tem_signal_filtering_plot.png', bbox_inches='tight') plt.show()
Example 4:三维地形(Python)
# This import registers the 3D projection from mpl_toolkits.mplot3d import Axes3D from matplotlib import cbook from matplotlib import cm from matplotlib.colors import LightSource import matplotlib.pyplot as plt import numpy as np filename = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False) with np.load(filename) as dem: z = dem['elevation'] nrows, ncols = z.shape x = np.linspace(dem['xmin'], dem['xmax'], ncols) y = np.linspace(dem['ymin'], dem['ymax'], nrows) x, y = np.meshgrid(x, y) region = np.s_[5:50, 5:50] x, y, z = x[region], y[region], z[region] fig, ax = plt.subplots(subplot_kw=dict(projection='3d')) ls = LightSource(270, 45) rgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft') surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb, linewidth=0, antialiased=False, shade=False) plt.savefig('example4.png',dpi=600, bbox_inches='tight') plt.show()
Example 5:三维地形,包含投影(Python)
Example 6:切片,多维数据同时展现(Python)
Example 7:SSH GIF 动图展现(Matlab)
Example 8:Glider GIF 动图展现(Python)
Example 9:涡度追踪 GIF 动图展现
加载全部内容