亲宝软件园·资讯

展开

python ndarray数组对象有什么特点 python ndarray数组对象特点及实例分享

小妮浅浅 人气:0
想了解python ndarray数组对象特点及实例讲解的相关内容吗,小妮浅浅在本文为您仔细讲解python ndarray数组对象有什么特点的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python,ndarray,数组对象,下面大家一起来学习吧。

1、numpy数组是同质数组,即所有元素的数据类型必须相同。

2、ndarray数组一般要求所有元素的数据类型相同,下标从0开始,最后一个元素的下标为数组长度减1。

实例

import numpy as np
 
a = np.arange(0, 5, 1)
print(a)
b = np.arange(0, 10, 2)
print(b)

知识点扩充:

定义数组

>>> import numpy as np
>>> m = np.array([[1,2,3], [2,3,4]])    #定义矩阵,int64
>>> m
array([[1, 2, 3],
    [2, 3, 4]])
>>> m = np.array([[1,2,3], [2,3,4]], dtype=np.float)  #定义矩阵,float64
>>> m
array([[1., 2., 3.],
    [2., 3., 4.]])
>>> print(m.dtype)  #数据类型  
float64
>>> print(m.shape)  #形状2行3列
(2, 3)
>>> print(m.ndim)   #维数
2
>>> print(m.size)   #元素个数
6
>>> print(type(m))
<class 'numpy.ndarray'>

还有一些特殊的方法可以定义矩阵

>>> m = np.zeros((2,2))     #全0
>>> m
array([[0., 0.],
    [0., 0.]])
>>> print(type(m))        #也是ndarray类型
<class 'numpy.ndarray'>
>>> m = np.ones((2,2,3))    #全1
>>> m = np.full((3,4), 7)    #全为7
>>> np.eye(3)          #单位矩阵
array([[1., 0., 0.],
    [0., 1., 0.],
    [0., 0., 1.]])
>>> np.arange(20).reshape(4,5)  #生成一个4行5列的数组
>>>
>>> np.random.random((2,3))    #[0,1)随机数
array([[0.51123127, 0.40852721, 0.26159126],
    [0.42450279, 0.34763668, 0.06167501]])
>>> np.random.randint(1,10,(2,3))  #[1,10)随机整数的2行3列数组
array([[5, 4, 9],
    [2, 5, 7]])
>>> np.random.randn(2,3)       #正态随机分布
array([[-0.29538656, -0.50370707, -2.05627716],
    [-1.50126655, 0.41884067, 0.67306605]])
>>> np.random.choice([10,20,30], (2,3))   #随机选择
array([[10, 20, 10],
    [30, 10, 20]])
>>> np.random.beta(1,10,(2,3))       #贝塔分布
array([[0.01588963, 0.12635485, 0.22279098],
    [0.08950147, 0.02244569, 0.00953366]])

操作数组

>>> from numpy import *
>>> a1=array([1,1,1])  #定义一个数组
>>> a2=array([2,2,2])
>>> a1+a2        #对于元素相加
array([3, 3, 3])
>>> a1*2         #乘一个数
array([2, 2, 2])

##
>>> a1=np.array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1**3       #表示对数组中的每个数做立方
array([ 1, 8, 27])

##取值,注意的是它是以0为开始坐标,不matlab不同
>>> a1[1]
2

##定义多维数组
>>> a3=np.array([[1,2,3],[4,5,6]])
>>> a3
array([[1, 2, 3],
    [4, 5, 6]])
>>> a3[0]       #取出第一行的数据
array([1, 2, 3])
>>> a3[0,0]      #第一行第一个数据
1
>>> a3[0][0]     #也可用这种方式
1
>>> a3
array([[1, 2, 3],
    [4, 5, 6]])
>>> a3.sum(axis=0)   #按行相加,列不变
array([5, 7, 9])
>>> a3.sum(axis=1)   #按列相加,行不变
array([ 6, 15])

加载全部内容

相关教程
猜你喜欢
用户评论