亲宝软件园·资讯

展开

OpenCV可分离滤波 OpenCV实现可分离滤波

我有一個夢想 人气:0
想了解OpenCV实现可分离滤波的相关内容吗,我有一個夢想在本文为您仔细讲解OpenCV可分离滤波的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:OpenCV,可分离滤波,下面大家一起来学习吧。

自定义滤波

无论是图像卷积还是滤波,在原图像上移动滤波器的过程中每一次的计算结果都不会影响到后面过程的计算结果,因此图像滤波是一个并行的算法,在可以提供并行计算的处理器中可以极大的加快图像滤波的处理速度。

图像滤波还具有可分离性

先对X(Y)方向滤波,再对Y(X)方向滤波的结果与将两个方向的滤波器联合后整体滤波的结果相同。两个方向的滤波器的联合就是将两个方向的滤波器相乘,得到一个矩形的滤波器

void filter2D( InputArray src, OutputArray dst, int ddepth,
                            InputArray kernel, Point anchor = Point(-1,-1),
                            double delta = 0, int borderType = BORDER_DEFAULT );
void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
                               InputArray kernelX, InputArray kernelY,
                               Point anchor = Point(-1,-1),
                               double delta = 0, int borderType = BORDER_DEFAULT );

简单示例

//
// Created by smallflyfly on 2021/6/15.
//
 
#include "opencv2/highgui.hpp"
#include "opencv2/opencv.hpp"
 
#include <iostream>
 
using namespace std;
using namespace cv;
 
int main() {
    float points[] = {
            1, 2, 3, 4, 5,
            6, 7, 8, 9, 10,
            11, 12, 13, 14, 15,
            16, 17, 18, 19, 20,
            21, 22, 23, 24, 25
    };
    Mat data(5, 5, CV_32FC1, points);
 
    // 验证高斯滤波器可分离
    Mat gaussX = getGaussianKernel(3, 1);
    cout << gaussX << endl;
    Mat gaussDstData, gaussDataXY;
    GaussianBlur(data, gaussDstData, Size(3, 3), 1, 1, BORDER_CONSTANT);
    sepFilter2D(data, gaussDataXY, -1, gaussX, gaussX, Point(-1, -1), 0, BORDER_CONSTANT);
    cout << gaussDstData << endl;
    cout << gaussDataXY << endl;
    cout << "######################################" << endl;
 
    // Y方向上滤波
    Mat a = (Mat_<float>(3, 1) << -1, 3, -1);
    // X方向上滤波
    Mat b = a.reshape(1, 1);
    // XY联合滤波
    Mat ab = a * b;
    Mat dataX, dataY, dataXY1, dataXY2, dataSepXY;
    filter2D(data, dataX, -1, b);
    filter2D(dataX, dataXY1, -1, a);
    filter2D(data, dataXY2, -1, ab);
    sepFilter2D(data, dataSepXY, -1, a, b);
 
    // 验证结果
    cout << dataXY1 << endl;
    cout << dataXY2 << endl;
    cout << dataSepXY << endl;
 
    Mat im = imread("test.jpg");
    resize(im, im, Size(0, 0), 0.5, 0.5);
 
    Mat imX, imY, imXY, imSepXY;
    filter2D(im, imX, -1, b);
    filter2D(imX, imXY, -1, a);
    sepFilter2D(im, imSepXY, -1, a, b);
 
    imshow("imXY", imXY);
    imshow("imSepXY", imSepXY);
 
    waitKey(0);
    destroyAllWindows();
 
    return 0;
 
}

加载全部内容

相关教程
猜你喜欢
用户评论