亲宝软件园·资讯

展开

python os.walk()方法 详解python os.walk()方法的使用

林思少 人气:0
想了解详解python os.walk()方法的使用的相关内容吗,林思少在本文为您仔细讲解python os.walk()方法的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python,os.walk()方法,python,os.walk()的使用,下面大家一起来学习吧。

python os.walk()方法

os.walk方法是python中帮助我们高效管理文件、目录的工具,在深度学习中数据整理应用的很频繁,如数据集的名称格式化、将数据集的按一定比例划分训练集train_set、测试集test_set。

1.导入文件(使用os.walk方法前需要导入以下包)

import os
import random # 后续用来将数据随机打乱和生成确定随机种子,保证每次生成的随机数据一样便于测试模型精准度

2.os.walk()参数解释

os.walk(top, topdown=True, οnerrοr=None, followlinks=False)(后两个参数我几乎没用过)
参数

--top 我们需要遍历的文件夹的地址(最好使用绝对地址,相对地址有时会出现未知错误)
--topdown 该参数为True时,会优先遍历top目录,否则优先遍历top的子目录(默认值为 True)
--onerror 需要一个 callable 对象,当walk需要异常时会调用
--followlinks 如果为真,则会遍历目录下的快捷方式(linux 下是 symbolic link)实际所指的目录(默认关闭)

os.walk 的返回值是一个生成器(generator),也就是说我们可以用循环去不遍历它,来获得其内容。每次遍历的对象都是返回的是一个三元组(root,dirs,files)

--root 指的是当前正在遍历的这个文件夹的本身的地址
--dirs 返回的是一个列表list,表中数据是该文件夹中所有的目录的名称(但不包括子目录名称)
--files 返回的也是一个列表list , 表中数据是该文件夹中所有的文件名称(但不包括子目录名称)

3.用于测试文件夹组织结构

在这里插入图片描述4.

废话不说,看测试例子

4.1 os.walk(top, topdown=True)时打印返回的 root,dirs,files,顺便测试下topdown为真和假时的遍历顺序的区别。(这里就不展示运行后的结果了,代码拿走直接就可运行)

# topdown=True(该参数默认为真)
def _get_img_info(): 
	#测试时将data_dir 换为自己的目标文件夹即可
    data_dir = r'C:\Users\futiange\Desktop\Zero to Hero\expression_test\raw_data'
    for root,dirs,files in os.walk(data_dir,topdown=True):
        print('root={}'.format(root))
        print('dirs={}'.format(dirs))
        print('files={}'.format(files))
if __name__ == '__main__':
    _get_img_info()
# topdown=False(该参数默认为假) 
def _get_img_info(): 
    data_dir = r'C:\Users\futiange\Desktop\Zero to Hero\expression_test\raw_data'
    for root,dirs,files in os.walk(data_dir,topdown=False):
        print('root={}'.format(root))
        print('dirs={}'.format(dirs))
        print('files={}'.format(files))
if __name__ == '__main__':
    _get_img_info()

4.2 使用案例

在深度学习中遍历数据集时,我们可以对数据集划分,这里按train :test = 9 : 1划分。

import os
import random # 后续用来将数据随机打乱和生成确定随机种子,保证每次生成的随机数据一样便于测试模型精准度

def _get_img_info(rng_seed,split_n,mode):
    image_path_list = [] #用来存放图片的路径
    label_path_list = [] #用来存放图片对应的标签
    data_dir = r'C:\Users\futiange\Desktop\Zero to Hero\expression_test\raw_data' 
    for root,dirs,files in os.walk(data_dir):
        for file in files:
            path_file = os.path.join(root,file)
            print(path_file)
            if path_file.endswith(".jpg"): #判断该路径下文件是不是以.jpg结尾
                #print(os.path.basename(root)) #输出图片路径
                #print(os.path.basename(root)[0]) #输出该图片所在的文件夹的第一个字符,我这里文件夹的第一个字符就是图片的标签,测试时可以根据自己的文件夹名称更改
                #print(int(os.path.basename(root)[0]))
                image_path_list.append(path_file) #将图片路径加入列表
                label_path_list.append(os.path.basename(root)[0]) #根据文件夹名称确定标签,并加入列表
    data_info = [[n,l] for n,l in zip(image_path_list,label_path_list)] #将图片路径-标签 关联起来
    random.seed(rng_seed) # 该方法中传入参数,确保每次生成的种子都是一样的
    random.shuffle(data_info) #上一行代码生成的种子是确定的,保证了每次将列表元素打乱后的结果一样,便于测试模型性能
    split_idx = int(len(data_info) * split_n) # data_len * 0.9 # split_n代表数据集划分的比例
    if mode == 'train':
        img_set = data_info[:split_idx] 
    elif mode == 'val':
        img_set = data_info[split_idx:]
    else:
        raise Exception("mode 无法识别,仅支持(train,valid)")
    return img_set #返回随机打乱后的数据集,后续在对其进行格式化即可将数据集加载进模型测试
if __name__ == '__main__':
    _get_img_info(1,0.9,'train')

加载全部内容

相关教程
猜你喜欢
用户评论