亲宝软件园·资讯

展开

pytorch finetuning图片训练 pytorch finetuning 自己的图片进行训练操作

nancheng911 人气:0
想了解pytorch finetuning 自己的图片进行训练操作的相关内容吗,nancheng911在本文为您仔细讲解pytorch finetuning图片训练的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:pytorch,finetuning,图片训练,下面大家一起来学习吧。

一、pytorch finetuning 自己的图片进行训练

这种读取图片的方式用的是torch自带的 ImageFolder,读取的文件夹必须在一个大的子文件下,按类别归好类。

就像我现在要区分三个类别。

#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
         [
            transforms.Scale(256),
            transforms.CenterCrop(224),
            transforms.ToTensor()
       ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)

然后就是fine tuning自己的网络,在torch中可以对整个网络修改后,训练全部的参数也可以只训练其中的一部分,我这里就只训练最后一个全连接层。

torchvision中提供了很多常用的模型,比如resnet ,Vgg,Alexnet等等

# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
    param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)

定义自己的优化器,注意这里的参数只传入最后一层的

#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)

然后就可以开始训练了,定义好各种参数。

#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
    train_loss=0.
    train_acc=0.
    for step,data in enumerate(train_loader):
        batch_x,batch_y=data
        batch_x,batch_y=Variable(batch_x),Variable(batch_y)
        #batch_y not one hot
        #out is the probability of eatch class
        # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
        # out shape is batch_size * class
        out=mode1_ft_res18(batch_x)
        loss=criterion(out,batch_y)
        train_loss+=loss.data[0]
        # pred is the expect class
        #batch_y is the true label
        pred=torch.max(out,1)[1]
        train_correct=(pred==batch_y).sum()
        train_acc+=train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step%14==0:
            print('Epoch: ',epoch,'Step',step,
                  'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))

测试部分和训练部分类似这里就不一一说明。

这样就完整了对自己网络的训练测试,完整代码如下:

import torch
import numpy as np
import torchvision
from torchvision import transforms,utils
from torch.utils.data import DataLoader
from torch.autograd import Variable
#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
           [
               transforms.Scale(256),
               transforms.CenterCrop(224),
               transforms.ToTensor()
         ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)
 
#test data
test_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/testData',transform=transforms.Compose(
           [
         transforms.Scale(256),
         transforms.CenterCrop(224),
         transforms.ToTensor()
         ]))
test_loader=DataLoader(test_data,batch_size=20,shuffle=True)
 
# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
    param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)
 
#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)
 
#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
    train_loss=0.
    train_acc=0.
    for step,data in enumerate(train_loader):
        batch_x,batch_y=data
        batch_x,batch_y=Variable(batch_x),Variable(batch_y)
        #batch_y not one hot
        #out is the probability of eatch class
        # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
        # out shape is batch_size * class
        out=mode1_ft_res18(batch_x)
        loss=criterion(out,batch_y)
        train_loss+=loss.data[0]
        # pred is the expect class
        #batch_y is the true label
        pred=torch.max(out,1)[1]
        train_correct=(pred==batch_y).sum()
        train_acc+=train_correct.data[0]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step%14==0:
            print('Epoch: ',epoch,'Step',step,
                  'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))
 
    #print('Epoch: ', epoch, 'Train_loss: ', train_loss / len(train_data), 'Train acc: ', train_acc / len(train_data))
 
# test model
mode1_ft_res18.eval()
eval_loss=0
eval_acc=0
for step ,data in enumerate(test_loader):
    batch_x,batch_y=data
    batch_x,batch_y=Variable(batch_x),Variable(batch_y)
    out=mode1_ft_res18(batch_x)
    loss = criterion(out, batch_y)
    eval_loss += loss.data[0]
    # pred is the expect class
    # batch_y is the true label
    pred = torch.max(out, 1)[1]
    test_correct = (pred == batch_y).sum()
    eval_acc += test_correct.data[0]
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
print( 'Test_loss: ', eval_loss / len(test_data), 'Test acc: ', eval_acc / len(test_data))

二、PyTorch 利用预训练模型进行Fine-tuning

在Deep Learning领域,很多子领域的应用,比如一些动物识别,食物的识别等,公开的可用的数据库相对于ImageNet等数据库而言,其规模太小了,无法利用深度网络模型直接train from scratch,容易引起过拟合,这时就需要把一些在大规模数据库上已经训练完成的模型拿过来,在目标数据库上直接进行Fine-tuning(微调),这个已经经过训练的模型对于目标数据集而言,只是一种相对较好的参数初始化方法而已,尤其是大数据集与目标数据集结构比较相似的话,经过在目标数据集上微调能够得到不错的效果。

Fine-tune预训练网络的步骤:

1. 首先更改预训练模型分类层全连接层的数目,因为一般目标数据集的类别数与大规模数据库的类别数不一致,更改为目标数据集上训练集的类别数目即可,一致的话则无需更改;

2. 把分类器前的网络的所有层的参数固定,即不让它们参与学习,不进行反向传播,只训练分类层的网络,这时学习率可以设置的大一点,如是原来初始学习率的10倍或几倍或0.01等,这时候网络训练的比较快,因为除了分类层,其它层不需要进行反向传播,可以多尝试不同的学习率设置。

3.接下来是设置相对较小的学习率,对整个网络进行训练,这时网络训练变慢啦。

下面对利用PyTorch深度学习框架Fine-tune预训练网络的过程中涉及到的固定可学习参数,对不同的层设置不同的学习率等进行详细讲解。

1. PyTorch对某些层固定网络的可学习参数的方法:

class Net(nn.Module):
    def __init__(self, num_classes=546):
        super(Net, self).__init__()
        self.features = nn.Sequential(
 
            nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
 
        self.Conv1_1 = nn.Sequential(
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )
 
  for p in self.parameters():
            p.requires_grad=False
        self.Conv1_2 = nn.Sequential(
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )

如上述代码,则模型Net网络中self.features与self.Conv1_1层中的参数便是固定,不可学习的。这主要看代码:

for p in self.parameters():
    p.requires_grad=False

插入的位置,这段代码前的所有层的参数是不可学习的,也就没有反向传播过程。也可以指定某一层的参数不可学习,如下:

for p in  self.features.parameters():
    p.requires_grad=False

则 self.features层所有参数均是不可学习的。

注意,上述代码设置若要真正生效,在训练网络时需要在设置优化器如下:

 optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
        momentum=args.momentum,
        weight_decay=args.weight_decay)

2. PyTorch之为不同的层设置不同的学习率

model = Net()
conv1_2_params = list(map(id, model.Conv1_2.parameters()))
base_params = filter(lambda p: id(p) not in conv1_2_params,
                     model.parameters())
optimizer = torch.optim.SGD([
            {'params': base_params},
            {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}], args.lr,             
            momentum=args.momentum, weight_decay=args.weight_decay)

上述代码表示将模型Net网络的 self.Conv1_2层的学习率设置为传入学习率的10倍,base_params的学习没有明确设置,则默认为传入的学习率args.lr。

注意:

[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]

表示为列表中的字典结构。

这种方法设置不同的学习率显得不够灵活,可以为不同的层设置灵活的学习率,可以采用如下方法在adjust_learning_rate函数中设置:

def adjust_learning_rate(optimizer, epoch, args):
    lre = []
    lre.extend([0.01] * 10)
    lre.extend([0.005] * 10)
    lre.extend([0.0025] * 10)
    lr = lre[epoch]
    optimizer.param_groups[0]['lr'] = 0.9 * lr
    optimizer.param_groups[1]['lr'] = 10 * lr
    print(param_group[0]['lr'])
    print(param_group[1]['lr'])

上述代码中的optimizer.param_groups[0]就代表[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]中的'params': base_params},optimizer.param_groups[1]代表{'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr},这里设置的学习率会把args.lr给覆盖掉,个人认为上述代码在设置学习率方面更灵活一些。上述代码也可如下变成实现(注意学习率随便设置的,未与上述代码保持一致):

def adjust_learning_rate(optimizer, epoch, args):
    lre = np.logspace(-2, -4, 40)
    lr = lre[epoch]
    for i in range(len(optimizer.param_groups)):
        param_group = optimizer.param_groups[i]
        if i == 0:
            param_group['lr'] = 0.9 * lr
        else:
            param_group['lr'] = 10 * lr
        print(param_group['lr'])

下面贴出SGD优化器的PyTorch实现,及其每个参数的设置和表示意义,具体如下:

import torch
from .optimizer import Optimizer, required
 
class SGD(Optimizer):
    r"""Implements stochastic gradient descent (optionally with momentum).
    Nesterov momentum is based on the formula from
    `On the importance of initialization and momentum in deep learning`__.
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float): learning rate
        momentum (float, optional): momentum factor (default: 0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        dampening (float, optional): dampening for momentum (default: 0)
        nesterov (bool, optional): enables Nesterov momentum (default: False)
    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> optimizer.zero_grad()
        >>> loss_fn(model(input), target).backward()
        >>> optimizer.step()
    __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
    .. note::
        The implementation of SGD with Momentum/Nesterov subtly differs from
        Sutskever et. al. and implementations in some other frameworks.
        Considering the specific case of Momentum, the update can be written as
        .. math::
                  v = \rho * v + g \\
                  p = p - lr * v
        where p, g, v and :math:`\rho` denote the parameters, gradient,
        velocity, and momentum respectively.
        This is in contrast to Sutskever et. al. and
        other frameworks which employ an update of the form
        .. math::
             v = \rho * v + lr * g \\
             p = p - v
        The Nesterov version is analogously modified.
    """
 
    def __init__(self, params, lr=required, momentum=0, dampening=0,
                 weight_decay=0, nesterov=False):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
 
        defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
                        weight_decay=weight_decay, nesterov=nesterov)
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError("Nesterov momentum requires a momentum and zero dampening")
        super(SGD, self).__init__(params, defaults)
 
    def __setstate__(self, state):
        super(SGD, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('nesterov', False)
 
    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
 
        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
 
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
 
                p.data.add_(-group['lr'], d_p)
 
        return loss

经验总结:

在Fine-tuning时最好不要隔层设置层的参数的可学习与否,这样做一般效果饼不理想,一般准则即可,即先Fine-tuning分类层,学习率设置的大一些,然后在将整个网络设置一个较小的学习率,所有层一起训练。

至于不先经过Fine-tune分类层,而是将整个网络所有层一起训练,只是分类层的学习率相对设置大一些,这样做也可以,至于哪个效果更好,没评估过。当用三元组损失(triplet loss)微调用softmax loss训练的网络时,可以设置阶梯型的较小学习率,整个网络所有层一起训练,效果比较好,而不用先Fine-tune分类层前一层的输出。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论