亲宝软件园·资讯

展开

Pytorch distributed多卡并行载入 Pytorch distributed 多卡并行载入模型操作

orientliu96 人气:0
想了解Pytorch distributed 多卡并行载入模型操作的相关内容吗,orientliu96在本文为您仔细讲解Pytorch distributed多卡并行载入的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Pytorch,distributed,多卡并行,载入模型,下面大家一起来学习吧。

一、Pytorch distributed 多卡并行载入模型

这次来介绍下如何载入模型。

目前没有找到官方的distribute 载入模型的方式,所以采用如下方式。

大部分情况下,我们在测试时不需要多卡并行计算。

所以,我在测试时只使用单卡。

from collections import OrderedDict
device = torch.device("cuda")
model = DGCNN(args).to(device)  #自己的模型
state_dict = torch.load(args.model_path)    #存放模型的位置

new_state_dict = OrderedDict()
for k, v in state_dict.items():
    name = k[7:] # remove `module.`
    new_state_dict[name] = v
    # load params
model.load_state_dict (new_state_dict)

二、pytorch DistributedParallel进行单机多卡训练

One_导入库:

import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler

Two_进程初始化:

parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int, default=-1)
# 添加必要参数
# local_rank:系统自动赋予的进程编号,可以利用该编号控制打印输出以及设置device

torch.distributed.init_process_group(backend="nccl", init_method='file://shared/sharedfile',
rank=local_rank, world_size=world_size)

# world_size:所创建的进程数,也就是所使用的GPU数量
# (初始化设置详见参考文档)

Three_数据分发:

dataset = datasets.ImageFolder(dataPath)
data_sampler = DistributedSampler(dataset, rank=local_rank, num_replicas=world_size)
# 使用DistributedSampler来为各个进程分发数据,其中num_replicas与world_size保持一致,用于将数据集等分成不重叠的数个子集

dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=1,drop_last=True, pin_memory=True, sampler=data_sampler)
# 在Dataloader中指定sampler时,其中的shuffle必须为False,而DistributedSampler中的shuffle项默认为True,因此训练过程默认执行shuffle

Four_网络模型:

torch.cuda.set_device(local_rank)
device = torch.device('cuda:'+f'{local_rank}')
# 设置每个进程对应的GPU设备

D = Model()
D = torch.nn.SyncBatchNorm.convert_sync_batchnorm(D).to(device)
# 由于在训练过程中各卡的前向后向传播均独立进行,因此无法进行统一的批归一化,如果想要将各卡的输出统一进行批归一化,需要将模型中的BN转换成SyncBN
   
D = torch.nn.parallel.DistributedDataParallel(
D, find_unused_parameters=True, device_ids=[local_rank], output_device=local_rank)
# 如果有forward的返回值如果不在计算loss的计算图里,那么需要find_unused_parameters=True,即返回值不进入backward去算grad,也不需要在不同进程之间进行通信。

Five_迭代:

data_sampler.set_epoch(epoch)
# 每个epoch需要为sampler设置当前epoch

Six_加载:

dist.barrier()
D.load_state_dict(torch.load('D.pth'), map_location=torch.device('cpu'))
dist.barrier()
# 加载模型前后用dist.barrier()来同步不同进程间的快慢

Seven_启动:

CUDA_VISIBLE_DEVICES=1,3 python -m torch.distributed.launch --nproc_per_node=2 train.py --epochs 15000 --batchsize 10 --world_size 2
# 用-m torch.distributed.launch启动,nproc_per_node为所使用的卡数,batchsize设置为每张卡各自的批大小

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论