pandas DataFrame重置索引 pandas中DataFrame重置索引的几种方法
Jayson 人气:0想了解pandas中DataFrame重置索引的几种方法的相关内容吗,Jayson在本文为您仔细讲解pandas DataFrame重置索引的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:pandas,DataFrame重置索引,pandas,,重置索引,下面大家一起来学习吧。
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取、插入等。
小笔总结了以下几种重置索引的方法:
import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 18 19 # 对其重排顺序,得到索引顺序倒序的数据 df2 = df.sort_values('a', ascending=False) # 得到df2: a b c d 4 16 17 18 19 3 12 13 14 15 2 8 9 10 11 1 4 5 6 7 0 0 1 2 3
下面对df2重置索引,使其索引从0开始
法一:
简单粗暴:
df2.index = range(len(df2)) # 输出df2: a b c d 0 16 17 18 19 1 12 13 14 15 2 8 9 10 11 3 4 5 6 7 4 0 1 2 3
法二:
df2 = df2.reset_index(drop=True) # drop=True表示删除原索引,不然会在数据表格中新生成一列'index'数据 # 输出df2: a b c d 0 16 17 18 19 1 12 13 14 15 2 8 9 10 11 3 4 5 6 7 4 0 1 2 3
法三:
df2 = df2.reindex(labels=range(len(df)) #labels是第一个参数,可以省略 # 输出df2 a b c d 0 16 17 18 19 1 12 13 14 15 2 8 9 10 11 3 4 5 6 7 4 0 1 2 3 # 注:df = df.reindex(index=[]),在原数据结构上新建行(index是新索引,若新建数据索引在原数据中存在,则引用原有数据),默认用NaN填充(使用fill_value=0 来修改填充值自定义,此处我设置的是0)。 # df = df.reindex(columns=[]),在原数据结构上新建列,方法与新建行一样
法四:
df2 = df2.set_index(keys=['a', 'c']) # 将原数据a, c列的数据作为索引。 # drop=True,默认,是将数据作为索引后,在表格中删除原数据 # append=False,默认,是将新设置的索引设置为内层索引,原索引是外层索引 # 输出df2,注意a,c列是索引: b d a c 16 18 17 19 12 14 13 15 8 10 9 11 4 6 5 7 0 2 1 3
加载全部内容