二叉搜索树的基本操作 Java基础之二叉搜索树的基本操作
保护眼睛 人气:0想了解Java基础之二叉搜索树的基本操作的相关内容吗,保护眼睛在本文为您仔细讲解二叉搜索树的基本操作的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Java二叉搜索树的操作,Java二叉搜索树,下面大家一起来学习吧。
一、二叉搜索树插入元素
/** * user:ypc; * date:2021-05-18; * time: 15:09; */ class Node { int val; Node left; Node right; Node(int val) { this.val = val; } } public void insert(int key) { Node node = new Node(key); if (this.root == null) { root = node; } Node cur = root; Node parent = null; while (cur != null) { if (cur.val == key) { //System.out.println("元素已经存在"); return; } else if (cur.val > key) { parent = cur; cur = cur.left; } else { parent = cur; cur = cur.right; } } if (key > parent.val) { parent.right = node; } else { parent.left = node; } }
二、搜索指定节点
public boolean search(int key) { Node cur = root; while (cur != null) { if (cur.val == key) { return true; } else if (cur.val > key) { cur = cur.left; } else { cur = cur.right; } } return false; }
三、删除节点方式一
public void removenode1(Node parent, Node cur) { if (cur.left == null) { if (cur == root) { root = cur.right; } else if (cur == parent.right) { parent.left = cur.right; } else { parent.right = cur.right; } } else if (cur.right == null) { if (cur == root) { root.left = cur; } else if (cur == parent.right) { parent.right = cur.left; } else { parent.left = cur.left; } } else { Node tp = cur; Node t = cur.right; while (t.left != null) { tp = t; t = t.left; } if (tp.left == t) { cur.val = t.val; tp.left = t.right; } if (tp.right == t) { cur.val = t.val; tp.right = t.right; } } } public void remove(int key) { Node cur = root; Node parent = null; while (cur != null) { if (cur.val == key) { removenode1(parent, cur); //removenode2(parent, cur); return; } else if (key > cur.val) { parent = cur; cur = cur.right; } else { parent = cur; cur = cur.left; } } }
四、删除节点方式二
public void removenode2(Node parent, Node cur) { if (cur.left == null) { if (cur == root) { root = cur.right; } else if (cur == parent.right) { parent.left = cur.right; } else { parent.right = cur.right; } } else if (cur.right == null) { if (cur == root) { root.left = cur; } else if (cur == parent.right) { parent.right = cur.left; } else { parent.left = cur.left; } } else { Node tp = cur; Node t = cur.left; while (t.right != null) { tp = t; t = t.right; } if (tp.right == t) { cur.val = t.val; tp.right = t.left; } if (tp.left == t) { cur.val = t.val; tp.left = t.left; } } }
五、运行结果
/** * user:ypc; * date:2021-05-18; * time: 15:09; */ class TestBinarySearchTree { public static void main(String[] args) { int a[] = {5, 3, 4, 1, 7, 8, 2, 6, 0, 9}; BinarySearchTree binarySearchTree = new BinarySearchTree(); for (int i = 0; i < a.length; i++) { binarySearchTree.insert(a[i]); } binarySearchTree.inOrderTree(binarySearchTree.root); System.out.println(); binarySearchTree.preOrderTree(binarySearchTree.root); binarySearchTree.remove(7); System.out.println(); System.out.println("方法一删除后"); binarySearchTree.inOrderTree(binarySearchTree.root); System.out.println(); binarySearchTree.preOrderTree(binarySearchTree.root); } }
加载全部内容