亲宝软件园·资讯

展开

Redis延迟队列和分布式延迟队列 Redis延迟队列和分布式延迟队列的简答实现

黄青石 人气:0
想了解Redis延迟队列和分布式延迟队列的简答实现的相关内容吗,黄青石在本文为您仔细讲解Redis延迟队列和分布式延迟队列的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Redis,延迟队列,Redis,分布式延迟队列,下面大家一起来学习吧。

        最近,又重新学习了下Redis,Redis不仅能快还能慢,简直利器,今天就为大家介绍一下Redis延迟队列和分布式延迟队列的简单实现。

  在我们的工作中,很多地方使用延迟队列,比如订单到期没有付款取消订单,制订一个提醒的任务等都需要延迟队列,那么我们需要实现延迟队列。我们本文的梗概如下,同学们可以选择性阅读。

1. 实现一个简单的延迟队列。

  我们知道目前JAVA可以有DelayedQueue,我们首先开一个DelayQueue的结构类图。DelayQueue实现了Delay、BlockingQueue接口。也就是DelayQueue是一种阻塞队列。

  我们在看一下Delay的类图。Delayed接口也实现了Comparable接口,也就是我们使用Delayed的时候需要实现CompareTo方法。因为队列中的数据需要排一下先后,根据我们自己的实现。Delayed接口里边有一个方法就是getDelay方法,用于获取延迟时间,判断是否时间已经到了延迟的时间,如果到了延迟的时间就可以从队列里边获取了。

  我们创建一个Message类,实现了Delayed接口,我们主要把getDelay和compareTo进行实现。在Message的构造方法的地方传入延迟的时间,单位是毫秒,计算好触发时间fireTime。同时按照延迟时间的升序进行排序。我重写了里边的toString方法,用于将Message按照我写的方法进行输出。

package com.hqs.delayQueue.bean;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
public class Message implements Delayed {

    private String body;
    private long fireTime;

    public String getBody() {
        return body;
    }

    public long getFireTime() {
        return fireTime;
    }

    public Message(String body, long delayTime) {
        this.body = body;
        this.fireTime = delayTime + System.currentTimeMillis();
    }

    public long getDelay(TimeUnit unit) {

        return unit.convert(this.fireTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
    }

    public int compareTo(Delayed o) {
        return (int) (this.getDelay(TimeUnit.MILLISECONDS) -o.getDelay(TimeUnit.MILLISECONDS));
    }

    @Override
    public String toString() {
        return System.currentTimeMillis() + ":" + body;
    }

    public static void main(String[] args) throws InterruptedException {
        System.out.println(System.currentTimeMillis() + ":start");
        BlockingQueue<Message> queue = new DelayQueue<>();
        Message message1 = new Message("hello", 1000 * 5L);
        Message message2 = new Message("world", 1000 * 7L);

        queue.put(message1);
        queue.put(message2);

        while (queue.size() > 0) {
            System.out.println(queue.take());
        }
    }
}

  里边的main方法里边声明了两个Message,一个延迟5秒,一个延迟7秒,时间到了之后会将接取出并且打印。输出的结果如下,正是我们所期望的。

1587218430786:start
1587218435789:hello
1587218437793:world

  这个方法实现起来真的非常简单。但是缺点也是很明显的,就是数据在内存里边,数据比较容易丢失。那么我们需要采用Redis实现分布式的任务处理。

  2. 使用Redis的list实现分布式延迟队列。

  本地需要安装一个Redis,我自己是使用Docker构建一个Redis,非常快速,命令也没多少。我们直接启动Redis并且暴露6379端口。进入之后直接使用客户端命令即可查看和调试数据。

docker pull redis
docker run -itd --name redisLocal -p 6379:6379 redis
docker exec -it redisLocal /bin/bash
redis-cli

  我本地采用spring-boot的方式连接redis,pom文件列一下,供大家参考。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.6.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.hqs</groupId>
    <artifactId>delayQueue</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>delayQueue</name>
    <description>Demo project for Spring Boot</description>

    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

  加上Redis的配置放到application.properties里边即可实现Redis连接,非常的方便。

# redis
redis.host=127.0.0.1
redis.port=6379
redis.password=
redis.maxIdle=100
redis.maxTotal=300
redis.maxWait=10000
redis.testOnBorrow=true
redis.timeout=100000

  接下来实现一个基于Redis的list数据类型进行实现的一个类。我们使用RedisTemplate操作Redis,这个里边封装好我们所需要的Redis的一些方法,用起来非常方便。这个类允许延迟任务做多有10W个,也是避免数据量过大对Redis造成影响。如果在线上使用的时候也需要考虑延迟任务的多少。太多几百万几千万的时候可能数据量非常大,我们需要计算Redis的空间是否够。这个代码也是非常的简单,一个用于存放需要延迟的消息,采用offer的方法。另外一个是启动一个线程, 如果消息时间到了,那么就将数据lpush到Redis里边。

package com.hqs.delayQueue.cache;

import com.hqs.delayQueue.bean.Message;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;

import java.util.concurrent.BlockingQueue;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
@Slf4j
public class RedisListDelayedQueue{

    private static final int MAX_SIZE_OF_QUEUE = 100000;
    private RedisTemplate<String, String> redisTemplate;
    private String queueName;
    private BlockingQueue<Message> delayedQueue;

    public RedisListDelayedQueue(RedisTemplate<String, String> redisTemplate, String queueName, BlockingQueue<Message> delayedQueue) {
        this.redisTemplate = redisTemplate;
        this.queueName = queueName;
        this.delayedQueue = delayedQueue;
        init();
    }

    public void offerMessage(Message message) {
        if(delayedQueue.size() > MAX_SIZE_OF_QUEUE) {
            throw new IllegalStateException("超过队列要求最大值,请检查");
        }
        try {
            log.info("offerMessage:" + message);
            delayedQueue.offer(message);
        } catch (Exception e) {
            log.error("offMessage异常", e);
        }
    }

    public void init() {
        new Thread(() -> {
            while(true) {
                try {
                    Message message = delayedQueue.take();
                    redisTemplate.opsForList().leftPush(queueName, message.toString());
                } catch (InterruptedException e) {
                    log.error("取消息错误", e);
                }
            }
        }).start();
    }
}

  接下来我们看一下,我们写一个测试的controller。大家看一下这个请求/redis/listDelayedQueue的代码位置。我们也是生成了两个消息,然后把消息放到队列里边,另外我们在启动一个线程任务,用于将数据从Redis的list中获取。方法也非常简单。

package com.hqs.delayQueue.controller;

import com.hqs.delayQueue.bean.Message;
import com.hqs.delayQueue.cache.RedisListDelayedQueue;
import com.hqs.delayQueue.cache.RedisZSetDelayedQueue;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ResponseBody;

import java.util.Set;
import java.util.concurrent.*;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
@Slf4j
@Controller
public class DelayQueueController {

    private static final int CORE_SIZE = Runtime.getRuntime().availableProcessors();

    //注意RedisTemplate用的String,String,后续所有用到的key和value都是String的
    @Autowired
    RedisTemplate<String, String> redisTemplate;

    private static ThreadPoolExecutor taskExecPool = new ThreadPoolExecutor(CORE_SIZE, CORE_SIZE, 0, TimeUnit.SECONDS,
            new LinkedBlockingDeque<>());

    @GetMapping("/redisTest")
    @ResponseBody
    public String redisTest() {
        redisTemplate.opsForValue().set("a","b",60L, TimeUnit.SECONDS);
        System.out.println(redisTemplate.opsForValue().get("a"));
        return "s";
    }

    @GetMapping("/redis/listDelayedQueue")
    @ResponseBody
    public String listDelayedQueue() {

        Message message1 = new Message("hello", 1000 * 5L);
        Message message2 = new Message("world", 1000 * 7L);

        String queueName = "list_queue";

        BlockingQueue<Message> delayedQueue = new DelayQueue<>();

        RedisListDelayedQueue redisListDelayedQueue = new RedisListDelayedQueue(redisTemplate, queueName, delayedQueue);

        redisListDelayedQueue.offerMessage(message1);
        redisListDelayedQueue.offerMessage(message2);
        asyncListTask(queueName);

        return "success";
    }

    @GetMapping("/redis/zSetDelayedQueue")
    @ResponseBody
    public String zSetDelayedQueue() {

        Message message1 = new Message("hello", 1000 * 5L);
        Message message2 = new Message("world", 1000 * 7L);

        String queueName = "zset_queue";

        BlockingQueue<Message> delayedQueue = new DelayQueue<>();

        RedisZSetDelayedQueue redisZSetDelayedQueue = new RedisZSetDelayedQueue(redisTemplate, queueName, delayedQueue);

        redisZSetDelayedQueue.offerMessage(message1);
        redisZSetDelayedQueue.offerMessage(message2);
        asyncZSetTask(queueName);

        return "success";
    }

    public void asyncListTask(String queueName) {
        taskExecPool.execute(() -> {
            for(;;) {
                String message = redisTemplate.opsForList().rightPop(queueName);
                if(message != null) {
                    log.info(message);
                }
            }
        });
    }

    public void asyncZSetTask(String queueName) {
        taskExecPool.execute(() -> {
            for(;;) {
                Long nowTimeInMs = System.currentTimeMillis();
                System.out.println("nowTimeInMs:" + nowTimeInMs);
                Set<String> messages = redisTemplate.opsForZSet().rangeByScore(queueName, 0, nowTimeInMs);
                if(messages != null && messages.size() != 0) {
                    redisTemplate.opsForZSet().removeRangeByScore(queueName, 0, nowTimeInMs);
                    for (String message : messages) {
                        log.info("asyncZSetTask:" + message + " " + nowTimeInMs);
                    }
                    log.info(redisTemplate.opsForZSet().zCard(queueName).toString());
                }
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
    }

}

  我就不把运行结果写出来了,感兴趣的同学自己自行试验。当然这个方法也是从内存中拿出数据,到时间之后放到Redis里边,还是会存在程序启动的时候,任务进行丢失。我们继续看另外一种方法更好的进行这个问题的处理。

3.使用Redis的zSet实现分布式延迟队列。

  我们需要再写一个ZSet的队列处理。下边的offerMessage主要是把消息直接放入缓存中。采用Redis的ZSET的zadd方法。zadd(key, value, score) 即将key=value的数据赋予一个score, 放入缓存中。score就是计算出来延迟的毫秒数。

package com.hqs.delayQueue.cache;

import com.hqs.delayQueue.bean.Message;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;

import java.util.concurrent.BlockingQueue;

/**
 * @author huangqingshi
 * @Date 2020-04-18
 */
@Slf4j
public class RedisZSetDelayedQueue {

    private static final int MAX_SIZE_OF_QUEUE = 100000;
    private RedisTemplate<String, String> redisTemplate;
    private String queueName;
    private BlockingQueue<Message> delayedQueue;

    public RedisZSetDelayedQueue(RedisTemplate<String, String> redisTemplate, String queueName, BlockingQueue<Message> delayedQueue) {
        this.redisTemplate = redisTemplate;
        this.queueName = queueName;
        this.delayedQueue = delayedQueue;
    }

    public void offerMessage(Message message) {
        if(delayedQueue.size() > MAX_SIZE_OF_QUEUE) {
            throw new IllegalStateException("超过队列要求最大值,请检查");
        }
        long delayTime = message.getFireTime() - System.currentTimeMillis();
        log.info("zset offerMessage" + message + delayTime);
        redisTemplate.opsForZSet().add(queueName, message.toString(), message.getFireTime());
    }

}

  上边的Controller方法已经写好了测试的方法。/redis/zSetDelayedQueue,里边主要使用ZSet的zRangeByScore(key, min, max)。主要是从score从0,当前时间的毫秒数获取。取出数据后再采用removeRangeByScore,将数据删除。这样数据可以直接写到Redis里边,然后取出数据后直接处理。这种方法比前边的方法稍微好一些,但是实际上还存在一些问题,因为依赖Redis,如果Redis内存不足或者连不上的时候,系统将变得不可用。

4. 总结一下,另外还有哪些可以延迟队列。

  上面的方法其实还是存在问题的,比如系统重启的时候还是会造成任务的丢失。所以我们在生产上使用的时候,我们还需要将任务保存起来,比如放到数据库和文件存储系统将数据存储起来,这样做到double-check,双重检查,最终达到任务的99.999%能够处理。

  其实还有很多东西可以实现延迟队列。

  1) RabbitMQ就可以实现此功能。这个消息队列可以把数据保存起来并且进行处理。

  2)Kafka也可以实现这个功能。

  3)Netty的HashedWheelTimer也可以实现这个功能。

最后放上我的代码: https://github.com/stonehqs/delayQueue

加载全部内容

相关教程
猜你喜欢
用户评论