亲宝软件园·资讯

展开

python 装饰器 python 装饰器功能与用法案例详解

hankleo 人气:0

本文实例讲述了python 装饰器功能与用法。分享给大家供大家参考,具体如下:

1、必备

#### 第一波 ####
def foo():
  print 'foo'
 
foo   #表示是函数
foo()  #表示执行foo函数
 
#### 第二波 ####
def foo():
  print 'foo'
 
foo = lambda x: x + 1
foo()  # 执行下面的lambda表达式,而不再是原来的foo函数,因为函数 foo 被重新定义了

2、需求来了

初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

############### 基础平台提供的功能如下 ###############
def f1():
  print 'f1'
 
def f2():
  print 'f2'
 
def f3():
  print 'f3'
 
def f4():
  print 'f4'
 
############### 业务部门A 调用基础平台提供的功能 ###############
f1()
f2()
f3()
f4()
 
############### 业务部门B 调用基础平台提供的功能 ###############
f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:

跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

当天Low B 被开除了...

老大把工作交给 Low BB,他是这么做的:

只对基础平台的代码进行重构,让N业务部门无需做任何修改

############### 基础平台提供的功能如下 ############### 

def f1():
  # 验证1
  # 验证2
  # 验证3
  print 'f1'

def f2():
  # 验证1
  # 验证2
  # 验证3
  print 'f2'

def f3():
  # 验证1
  # 验证2
  # 验证3
  print 'f3'

def f4():
  # 验证1
  # 验证2
  # 验证3
  print 'f4'
############### 业务部门不变 ############### 
### 业务部门A 调用基础平台提供的功能### 

f1()
f2()
f3()
f4()

### 业务部门B 调用基础平台提供的功能 ### 

f1()
f2()
f3()
f4()

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

只对基础平台的代码进行重构,其他业务部门无需做任何修改

############### 基础平台提供的功能如下 ############### 

def check_login():
  # 验证1
  # 验证2
  # 验证3
  pass

def f1():
  
  check_login()

  print 'f1'

def f2():
  
  check_login()

  print 'f2'

def f3():
  
  check_login()

  print 'f3'

def f4():
  
  check_login()
  
  print 'f4'

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

封闭:已实现的功能代码块
开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

def w1(func):
  def inner():
    # 验证1
    # 验证2
    # 验证3
    return func()
  return inner
 
@w1
def f1():
  print 'f1'
@w1
def f2():
  print 'f2'
@w1
def f3():
  print 'f3'
@w1
def f4():
  print 'f4'

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

def w1(func):
  def inner():
    # 验证1
    # 验证2
    # 验证3
    return func()
  return inner
@w1
def f1():
  print 'f1'

当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:

def w1(func): ==>将w1函数加载到内存
@w1

没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。

如上例@w1内部会执行一下操作:

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

先把上述流程看懂,之后还会继续更新...

3、问答时间

问题:被装饰的函数如果有参数呢?

一个参数:

def w1(func):
  def inner(arg):
    # 验证1
    # 验证2
    # 验证3
    return func(arg)
  return inner

@w1
def f1(arg):
  print 'f1'

两个参数:

def w1(func):
  def inner(arg1,arg2):
    # 验证1
    # 验证2
    # 验证3
    return func(arg1,arg2)
  return inner

@w1
def f1(arg1,arg2):
  print 'f1'

三个参数:

def w1(func):
  def inner(arg1,arg2,arg3):
    # 验证1
    # 验证2
    # 验证3
    return func(arg1,arg2,arg3)
  return inner

@w1
def f1(arg1,arg2,arg3):
  print 'f1'

问题:可以装饰具有处理n个参数的函数的装饰器?

def w1(func):
  def inner(*args,**kwargs):
    # 验证1
    # 验证2
    # 验证3
    return func(*args,**kwargs)
  return inner
 
@w1
def f1(arg1,arg2,arg3):
  print 'f1'

问题:一个函数可以被多个装饰器装饰吗?

def w1(func):
  def inner(*args,**kwargs):
    # 验证1
    # 验证2
    # 验证3
    return func(*args,**kwargs)
  return inner
 
def w2(func):
  def inner(*args,**kwargs):
    # 验证1
    # 验证2
    # 验证3
    return func(*args,**kwargs)
  return inner
 
@w1
@w2
def f1(arg1,arg2,arg3):
  print 'f1'

问题:还有什么更吊的装饰器吗?

#!/usr/bin/env python
#coding:utf-8
 
def Before(request,kargs):
  print 'before'
   
def After(request,kargs):
  print 'after'
 
 
def Filter(before_func,after_func):
  def outer(main_func):
    def wrapper(request,kargs):
       
      before_result = before_func(request,kargs)
      if(before_result != None):
        return before_result;
       
      main_result = main_func(request,kargs)
      if(main_result != None):
        return main_result;
       
      after_result = after_func(request,kargs)
      if(after_result != None):
        return after_result;
       
    return wrapper
  return outer
   
@Filter(Before, After)
def Index(request,kargs):
  print 'index'

4、functools.wraps

上述的装饰器虽然已经完成了其应有的

功能,即:装饰器内的函数代指了原函数,注意其只是代指而非相等,原函数的元信息没有被赋值到装饰器函数内部。例如:函数的注释信息

无元信息:

def outer(func):
  def inner(*args, **kwargs):
    print(inner.__doc__) # None
    return func()
  return inner

@outer
def function():
  """
  asdfasd
  :return:
  """
  print('func')

如果使用@functools.wraps装饰装饰器内的函数,那么就会代指元信息和函数。

含元信息:

def outer(func):
  @functools.wraps(func)
  def inner(*args, **kwargs):
    print(inner.__doc__) # None
    return func()
  return inner

@outer
def function():
  """
  asdfasd
  :return:
  """
  print('func')

希望本文所述对大家Python程序设计有所帮助。

加载全部内容

相关教程
猜你喜欢
用户评论