python opencv运动检测 python opencv实现运动检测
河间老王 人气:0# -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()): print('Open') else: print('摄像头未打开') background = cv2.imread('img.png',0)#读入一幅图像 es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 4)) while True: # 按'q'健退出循环 key = cv2.waitKey(1) & 0xFF # 读取视频流 grabbed, img = camera.read() gray1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray1, (21, 21), 0)#可在这添加处理程序 #!!!等相机稳定后按下W选择背景 if key == ord('w'): background = gray print '背景已选定' diff = cv2.absdiff(gray, background) binary = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]#二值化阈值处理 dilation = cv2.dilate(binary, es, iterations=2) # 形态学膨胀<--可在这添加处理程序 contours, hierarchy = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) for c in contours: # 对于矩形区域,只显示大于给定阈值的轮廓,所以一些微小的变化不会显示。 if cv2.contourArea(c) < 1500: continue (x, y, w, h) = cv2.boundingRect(c) # 该函数计算矩形的边界框 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imshow('img', img) cv2.imshow('dilation', dilation) if key == ord('q'): break camera.release()#ubuntu一定要释放相机资源否则要重启才能再次使用 cv2.destroyAllWindows()
加载全部内容