Python+matplotlib实现计算两个信号的交叉谱密度 Python+matplotlib实现计算两个信号的交叉谱密度实例
人气:0想了解Python+matplotlib实现计算两个信号的交叉谱密度实例的相关内容吗,在本文为您仔细讲解Python+matplotlib实现计算两个信号的交叉谱密度的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python,matplotlib,python的matplotlib,python中matplotlib,python安装matplotlib,python,matplotlib,实例,下面大家一起来学习吧。
计算两个信号的交叉谱密度
结果展示:
完整代码:
import numpy as np import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(2, 1) # make a little extra space between the subplots fig.subplots_adjust(hspace=0.5) dt = 0.01 t = np.arange(0, 30, dt) # Fixing random state for reproducibility np.random.seed(19680801) nse1 = np.random.randn(len(t)) # white noise 1 nse2 = np.random.randn(len(t)) # white noise 2 r = np.exp(-t / 0.05) cnse1 = np.convolve(nse1, r, mode='same') * dt # colored noise 1 cnse2 = np.convolve(nse2, r, mode='same') * dt # colored noise 2 # two signals with a coherent part and a random part s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1 s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2 ax1.plot(t, s1, t, s2) ax1.set_xlim(0, 5) ax1.set_xlabel('time') ax1.set_ylabel('s1 and s2') ax1.grid(True) cxy, f = ax2.csd(s1, s2, 256, 1. / dt) ax2.set_ylabel('CSD (db)') plt.show()
总结
以上就是本文关于Python+matplotlib实现计算两个信号的交叉谱密度实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
加载全部内容