亲宝软件园·资讯

展开

Linux安装Pytorch GPU Linux安装Pytorch1.8GPU(CUDA11.1)的实现

太阳花的小绿豆 人气:0
想了解Linux安装Pytorch1.8GPU(CUDA11.1)的实现的相关内容吗,太阳花的小绿豆在本文为您仔细讲解Linux安装Pytorch GPU 的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Linux安装Pytorch,GPU,Pytorch,GPU安装,下面大家一起来学习吧。

先说下自己之前的环境(都是Linux系统,差别不大):

提示,如果想要保留之前的PyTorch1.6或1.7的环境,请不要卸载CUDA环境,可以通过Anaconda管理不同的环境,互不影响。但是需要注意你的NVIDIA驱动版本是否匹配。

在这里能够看到官方给的对应CUDA版本所需使用驱动版本。

cuda-driver

通过上表可以发现,如果要使用CUDA11.1,那么需要将显卡的驱动更新至455.23或以上(Linux x86_64环境)。由于我之前的驱动版本是440.33.01,那么肯定不满足,所以需要更新下显卡的驱动。通过以下指令可以查看你电脑上的驱动版本:

nvidia-smi

如果你的驱动版本是满足的,那么可以直接跳到创建Pytorch1.8虚拟环境章节。

更新驱动

卸载旧驱动

我之前安装的是NVIDIA-440的版本,找到之前下载的安装程序,然后打开终端通过以下指令进行卸载:

sh ./NVIDIA-Linux-x86_64-440.33.01.run --uninstall

安装新驱动

1)下载驱动,直接去NVIDIA官网下载:https://www.nvidia.cn/Download/index.aspx?lang=cn

driver

根据你的GPU型号以及操作信息选择对应的驱动,注意CUDA Toolkit11版的当前可选的只有11.0和11.2,而我们要装的是11.1所以选择11.2即可。

2)关闭Xserver服务 (如果没有安装桌面系统可以跳过)
我的桌面系统是gdm(GNOME Display Manager)类型的,通过systemctl可以看到:

systemctl status gdm.service

显示结果:

● gdm.service - GNOME Display Manager
Loaded: loaded (/usr/lib/systemd/system/gdm.service; enabled; vendor preset: enabled)
Active: active (running) since Fri 2021-01-22 09:27:06 CST; 1 months 22 days ago
Process: 32347 ExecStartPost=/bin/bash -c TERM=linux /usr/bin/clear > /dev/tty1 (code=exited, status=0/SUCCESS)
Main PID: 32344 (gdm)
Tasks: 22
CGroup: /system.slice/gdm.service
├─32344 /usr/sbin/gdm
└─32357 /usr/bin/X :0 -background none -noreset -audit 4 -verbose -auth /run/gdm/auth-for-gdm-mBzawN/databa...

Jan 22 09:27:06 localhost.localdomain systemd[1]: Starting GNOME Display Manager...
Jan 22 09:27:06 localhost.localdomain systemd[1]: Started GNOME Display Manager.

关闭gdm服务:

systemctl stop gdm.service

注意,如果还开启了类似VNC远程桌面的服务也要记得关闭。

3)安装新版本驱动

sh ./NVIDIA-Linux-x86_64-460.32.03.run 

4)检查nvidia服务
通过以下指令能够看到当前主机上的nvidia驱动版本以及所有可用GPU设备信息。

nvidia-smi

5)再次开启桌面服务、VNC等
如果不是gdm或者不使用桌面环境可以跳过此步骤

systemctl start gdm.service

创建PyTorch1.8虚拟环境

为了不同版本之间的环境互相隔离,强烈建议使用Anaconda的虚拟环境。其实使用起来也非常简单:

创建虚拟环境,这里我创建了一个名为torch18的虚拟环境,并且创建python3.8的编译环境。

conda create -n torch18 python=3.8

安装完成后,激活虚拟环境

conda activate torch18

接着安装点常用的包,这里直接通过requirements.txt批量安装(不需要可以跳过)

pip install -r requirements.txt

requirements.txt文件里可以是你常用的一些包,例如:

numpy==1.17.0
matplotlib==3.2.1
lxml==4.6.2
tqdm==4.42.1

如果需要退出虚拟环境,执行以下指令即可:

conda deactivate

安装PyTorch1.8

在线安装

进入PyTorch官网:http://pytorch.org/

pytorch

我们通过选择自己的系统类型、安装方式以及CUDA的版本可以得到对应的安装指令。官方默认会顺带安装torchvision和torchaudio但我只需要torchvision所以通过以下指令安装 (注意,要进入对应的虚拟环境安装,例如上面的torch18环境)

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

安装完成后就可以使用了,不需要在单独安装CUDA,并且不会影响之前安装的CUDA版本。

下面进行简单的测试:

首先在终端输入python进入python环境:

pyhton

然后导入torch包,查看cuda是否可用:

import torch
torch.cuda.is_available()

如果打印的是True表示成功

cuda

离线安装

有些时候,可能你的设备无法连接外网,此时需要提前准备好需要安装的whl文件,那么我们这里就以torchtorchvision为例(注意安装torch前需要提前安装好numpy包)。刚刚我们在线安装时发现安装指令最后有个网址,https://download.pytorch.org/whl/torch_stable.html,没错就是官方存放所有的安装包,所以我们可以直接去那里下载。

torchandvison

我们在这里可以找到我们需要的torch-1.8.0+cu111-cp38-cp38-linux_x86_64.whl以及torchvision-0.9.0+cu111-cp38-cp38-linux_x86_64.whl两个文件即可。注意,cu111代表CUDA11.1,cp38表示python3.8的编译环境,linux_x86_64表示x86的平台64位操作系统。下载完成后,我们将这两个文件传入你的离线主机(服务器)中。接着在保存这两个文件夹的目录下打开终端:

进入对应虚拟环境

conda activate torch18

安装torch

pip install torch-1.8.0+cu111-cp38-cp38-linux_x86_64.whl

安装torchvison

pip install torchvision-0.9.0+cu111-cp38-cp38-linux_x86_64.whl

安装完成后进行简单的测试:

首先在终端输入python进入python环境:

pyhton

然后导入torch包,查看cuda是否可用:

import torch
torch.cuda.is_available()

如果打印的是True表示成功

cuda

通过docker安装

在有些情况下是需要使用docker来跑深度学习环境的(现在很多大公司都是使用paas平台来部署的)。那么我们就需要使用pytorch官方的docker镜像了。我们可以在docker hub上去搜索相关镜像,https://registry.hub.docker.com/。下图是我搜索的pytorch字段的结果(点击Tags后)。

docker

我们可以看到当前最新的docker 镜像有pytorch/pytorch:1.8.0-cuda11.1-cudnn8-develpytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime,对于普通开发者下载pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime就行了。关于安装docker的过程这里不赘述。

1)我们直接通过以下指令就能pull这个镜像了

docker pull pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime

2)注意,在启动镜像前需要确保已安装NVIDIA Container Toolkit,否则会报错(若已安装可直接跳过此步骤):

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
  && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

安装NVIDIA Container Toolkit,参考官方文档:https://github.com/NVIDIA/nvidia-docker
这里以Centos7为例:

首先根据你的系统类型以及版本下载对应.repo文件到/etc/yum.repos.d

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
  && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

清空yum的过期缓存数据(如果不是root用户需要加sudo)

yum clean expire-cache

安装NVIDIA Container Toolkit(如果不是root用户需要加sudo)

yum install -y nvidia-docker2

重启docker服务(如果不是root用户需要加sudo)

systemctl restart docker

3)通过docker启动pytorch1.8.0容器

docker run --gpus all --rm -it --ipc=host pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime

4)进入容器后可以通过nvidia-smi看到所有的GPU设备信息

smi

5)接着进入python环境简单测试下pytorch能否正常调用GPU(打印True为成功)

import torch
torch.cuda.is_available()

test

加载全部内容

相关教程
猜你喜欢
用户评论