亲宝软件园·资讯

展开

最大公约数和最小公倍数 递归法求最大公约数和最小公倍数的实现代码

人气:0
想了解递归法求最大公约数和最小公倍数的实现代码的相关内容吗,在本文为您仔细讲解最大公约数和最小公倍数的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:递归法,最大公约数,最小公倍数,下面大家一起来学习吧。


       数学原理:

       设有两个数num1和num2,假设num1比较大。令余数r = num1 % num2。
       当r == 0时,即num1可以被num2整除,显然num2就是这两个数的最大公约数。
       当r != 0时,令num1 = num2(除数变被除数),num2 = r(余数变除数),再做 r = num1 % num2。递归,直到r == 0。
       以上数学原理可以用具体的两个数做一下分析,这样容易理解。

代码实现(求最大公约数):

复制代码 代码如下:

#include <iostream>
using namespace std;

int gcd(int a, int b);//声明最大公约数函数

int main()
{
    int num1 = 1;
    int num2 = 1;   
    cin >> num1 >> num2;
    while(num1 == 0 || num2 == 0)//判断是否有0值输入,若有则重新输入
    {
        cout << "input error !" << endl;
        cin >> num1 >> num2;
    }
    cout << "The gcd of " << num1 << " and " << num2 << " is: " << gcd(num1, num2) << endl;//调用最大公约数函数
    return 0;
}

int gcd(int a, int b)//函数定义
{
    int max = a > b ? a : b;
    int min = a < b ? a : b;
    a = max;
    b = min;
    int r = a % b;
    if(0 == r)//若a能被b整除,则b就是最大公约数。
        return b;
    else
        return gcd(b, r);//递归   
}


最小公倍数的求法建立在求最大公约数的方法之上。因为最小公倍数等于两个数的积除以最大公约数。

代码实现(求最小公倍数):
复制代码 代码如下:

#include <iostream>
using namespace std;

int gcd(int a, int b);//声明最大公约数函数

int main()
{
    int num1 = 1;
    int num2 = 1;   
    int lcm = 1;
    cin >> num1 >> num2;
    while(num1 == 0 || num2 == 0)//判断是否有0值输入,若有则重新输入
    {
        cout << "input error !" << endl;
        cin >> num1 >> num2;
    }
    lcm = num1 / gcd(num1, num2) * num2;//先除后乘可以在一定程度上防止大数
    cout << "The lcm of " << num1 << " and " << num2 << " is: " << lcm << endl;
    return 0;
}

int gcd(int a, int b)//函数定义
{
    int max = a > b ? a : b;
    int min = a < b ? a : b;
    a = max;
    b = min;
    int r = a % b;
    if(0 == r)//若a能被b整除,则b就是最大公约数。
        return b;
    else
        return gcd(b, r);//递归   
}


以上是仅仅限与求两个书的最大公约数和最小公倍数,当数字有很多时,该法是否依然适用,还有待考证。

加载全部内容

相关教程
猜你喜欢
用户评论