TensorFlow训练模型保存数量限制 解决TensorFlow训练模型及保存数量限制的问题
Destiny_Ren 人气:0想了解解决TensorFlow训练模型及保存数量限制的问题的相关内容吗,Destiny_Ren在本文为您仔细讲解TensorFlow训练模型保存数量限制的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:TensorFlow,训练模型,保存数量限制,下面大家一起来学习吧。
每次卷积神经网络训练的结果都只保存了最后一部分,查阅了一下相关资料,发现是定义saver时采用的默认值,这里进行如下设置:
saver = tf.train.Saver( max_to_keep = 100 , keep_checkpoint_every_n_hours = 1 )
补充:解决TensorFlow只能保存5个模型的问题
直奔主题
在训练模型的代码中找到这句代码:tf.train.Saver(),
改成:
tf.train.Saver(max_to_keep = m) # m为你想保存的模型数量
扩展
Saver类中的可选参数
tf.train.Saver(max_to_keep = m, keep_checkpoint_every_n_hours = n)
max_to_keep
保存离当前训练最近的模型数量,默认值为5。如果想全部保存,并且电脑内存够用,设成多大都可以。
keep_checkpoint_every_n_hours
每隔n个小时保存一次模型,默认值为10,000(一般情况下应该不会训练这么长时间,所以相当于是不会按照时间来保存,按照设置的epoch保存节点数来保存)。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
加载全部内容