亲宝软件园·资讯

展开

Python中logger日志模块 Python中logger日志模块详解

浅雨凉 人气:0
想了解Python中logger日志模块详解的相关内容吗,浅雨凉在本文为您仔细讲解Python中logger日志模块的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:logger日志模块,Python,logger,Python,logger日志模块,下面大家一起来学习吧。

1 logging模块简介

logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:

  1. 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息;
  2. print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;

Logger从来不直接实例化,经常通过logging模块级方法(Module-Level Function)logging.getLogger(name)来获得,其中如果name不给定就用root。名字是以点号分割的命名方式命名的(a.b.c)。对同一个名字的多个调用logging.getLogger()方法会返回同一个logger对象。这种命名方式里面,后面的loggers是前面logger的子logger,自动继承父loggers的log信息,正因为此,没有必要把一个应用的所有logger都配置一遍,只要把顶层的logger配置好了,然后子logger根据需要继承就行了。

logging.Logger对象扮演了三重角色:
     首先,它暴露给应用几个方法以便应用可以在运行时写log.
     其次,Logger对象按照log信息的严重程度或者根据filter对象来决定如何处理log信息(默认的过滤功能).
     最后,logger还负责把log信息传送给相关的handlers.

2 logging模块使用

2.1 基本使用

配置logging基本的设置,然后在控制台输出日志,

import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")

运行时,控制台输出,

1 2016-10-09 19:11:19,434 - __main__ - INFO - Start print log
2 2016-10-09 19:11:19,434 - __main__ - WARNING - Something maybe fail.
3 2016-10-09 19:11:19,434 - __main__ - INFO - Finish

logging中可以选择很多消息级别,如:DEBUG,INFO,WARNING,ERROR,CRITICAL,通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。

将logger的级别改为DEBUG,再观察一下输出结果

logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')

从输出结果可以看到,输出了debug的日志记录

2016-10-09 19:12:08,289 - __main__ - INFO - Start print log
2016-10-09 19:12:08,289 - __main__ - DEBUG - Do something
2016-10-09 19:12:08,289 - __main__ - WARNING - Something maybe fail.
2016-10-09 19:12:08,289 - __main__ - INFO - Finish

logging.basicConfig函数各参数:

filename:指定日志文件名;
filemode:和file函数意义相同,指定日志文件的打开模式,'w'或者'a';
format:指定输出的格式和内容,format可以输出很多有用的信息,
datefmt:指定时间格式,同time.strftime();
level:设置日志级别,默认为logging.WARNNING;
stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略; 

属性名称
    格式  
                                       说明  
name
%(name)s
日志的名称
asctime
%(asctime)s
可读时间,默认格式‘2003-07-08 16:49:45,896',逗号之后是毫秒
filename
%(filename)s
文件名,pathname的一部分
pathname
%(pathname)s
文件的全路径名称
funcName
%(funcName)s
调用日志多对应的方法名
levelname
%(levelname)s
日志的等级
levelno
%(levelno)s
数字化的日志等级
lineno
%(lineno)d
被记录日志在源码中的行数
module
%(module)s
模块名
msecs %(msecs)d 时间中的毫秒部分
process
%(process)d
进程的ID
processName
%(processName)s
进程的名称
thread
%(thread)d
线程的ID
threadName
%(threadName)s
线程的名称
relativeCreated
%(relativeCreated)d
日志被创建的相对时间,以毫秒为单位

2.2 将日志写入到文件

2.2.1 将日志写入到文件

设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中,

import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")

 log.txt中日志数据为:

2017-07-25 15:02:09,905 - __main__ - INFO - Start print log
2017-07-25 15:02:09,905 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:02:09,905 - __main__ - INFO - Finish

2.2.2 将日志同时输出到屏幕和日志文件

logger中添加StreamHandler,可以将日志输出到屏幕上,

import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
 
logger.addHandler(handler)
logger.addHandler(console)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")

 可以在log.txt文件和控制台中看到

2017-07-25 15:03:05,075 - __main__ - INFO - Start print log
2017-07-25 15:03:05,075 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:03:05,075 - __main__ - INFO - Finish

可以发现,logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种,

handler名称:位置;作用
 
StreamHandler:logging.StreamHandler;日志输出到流,可以是sys.stderr,sys.stdout或者文件
FileHandler:logging.FileHandler;日志输出到文件
BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滚方式
RotatingHandler:logging.handlers.RotatingHandler;日志回滚方式,支持日志文件最大数量和日志文件回滚
TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚方式,在一定时间区域内回滚日志文件
SocketHandler:logging.handlers.SocketHandler;远程输出日志到TCP/IP sockets
DatagramHandler:logging.handlers.DatagramHandler;远程输出日志到UDP sockets
SMTPHandler:logging.handlers.SMTPHandler;远程输出日志到邮件地址
SysLogHandler:logging.handlers.SysLogHandler;日志输出到syslog
NTEventLogHandler:logging.handlers.NTEventLogHandler;远程输出日志到Windows NT/2000/XP的事件日志
MemoryHandler:logging.handlers.MemoryHandler;日志输出到内存中的指定buffer
HTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"远程输出到HTTP服务器

2.2.3 日志回滚

使用RotatingFileHandler,可以实现日志回滚,

import logging
from logging.handlers import RotatingFileHandler
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
#定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1K
rHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)
rHandler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
rHandler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
 
logger.addHandler(rHandler)
logger.addHandler(console)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")

 可以在工程目录中看到,备份的日志文件,

.3 设置消息的等级

可以设置不同的日志等级,用于控制日志的输出

日志等级:使用范围
 
FATAL:致命错误
CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用
ERROR:发生错误时,如IO操作失败或者连接问题
WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误
INFO:处理请求或者状态变化等日常事务
DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态

 setLevel(lvl) 定义处理log的最低等级,内建的级别为:DEBUG,INFO,WARNING,ERROR,CRITICAL;下图是级别对应数值

2.4 捕获traceback

Python中的traceback模块被用于跟踪异常返回信息,可以在logging中记录下traceback

import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
 
logger.addHandler(handler)
logger.addHandler(console)
 
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
try:
 open("sklearn.txt","rb")
except (SystemExit,KeyboardInterrupt):
 raise
except Exception:
 logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
 
logger.info("Finish")

 控制台和日志文件log.txt中输出

2017-07-25 15:04:24,045 - __main__ - INFO - Start print log
2017-07-25 15:04:24,045 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:04:24,046 - __main__ - ERROR - Faild to open sklearn.txt from logger.error
Traceback (most recent call last):
 File "E:\PYTHON\Eclipse\eclipse\Doc\14day5\Logger模块\Logging.py", line 71, in <module>
 open("sklearn.txt","rb")
IOError: [Errno 2] No such file or directory: 'sklearn.txt'
2017-07-25 15:04:24,049 - __main__ - INFO - Finish

也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),

将
logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
替换为,
logger.exception("Failed to open sklearn.txt from logger.exception")
 

2.5 多模块使用logging

主模块mainModule.py

import logging
import subModule
logger = logging.getLogger("mainModule")
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
 
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
 
logger.addHandler(handler)
logger.addHandler(console)
 
 
logger.info("creating an instance of subModule.subModuleClass")
a = subModule.SubModuleClass()
logger.info("calling subModule.subModuleClass.doSomething")
a.doSomething()
logger.info("done with subModule.subModuleClass.doSomething")
logger.info("calling subModule.some_function")
subModule.som_function()
logger.info("done with subModule.some_function")

  子模块subModule.py

import logging
 
module_logger = logging.getLogger("mainModule.sub")
class SubModuleClass(object):
 def __init__(self):
 self.logger = logging.getLogger("mainModule.sub.module")
 self.logger.info("creating an instance in SubModuleClass")
 def doSomething(self):
 self.logger.info("do something in SubModule")
 a = []
 a.append(1)
 self.logger.debug("list a = " + str(a))
 self.logger.info("finish something in SubModuleClass")
 
def som_function():
 module_logger.info("call function some_function")

 执行之后,在控制和日志文件log.txt中输出

2017-07-25 15:05:07,427 - mainModule - INFO - creating an instance of subModule.subModuleClass
2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - creating an instance in SubModuleClass
2017-07-25 15:05:07,427 - mainModule - INFO - calling subModule.subModuleClass.doSomething
2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - do something in SubModule
2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - finish something in SubModuleClass
2017-07-25 15:05:07,427 - mainModule - INFO - done with subModule.subModuleClass.doSomething
2017-07-25 15:05:07,427 - mainModule - INFO - calling subModule.some_function
2017-07-25 15:05:07,427 - mainModule.sub - INFO - call function some_function
2017-07-25 15:05:07,428 - mainModule - INFO - done with subModule.some_function

说明:

首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。

实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。

3 通过JSON或者YAML文件配置logging模块

尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。

3.1 通过JSON文件配置

JSON配置文件

{
 "version":1,
 "disable_existing_loggers":false,
 "formatters":{
 "simple":{
 "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 }
 },
 "handlers":{
 "console":{
 "class":"logging.StreamHandler",
 "level":"DEBUG",
 "formatter":"simple",
 "stream":"ext://sys.stdout"
 },
 "info_file_handler":{
 "class":"logging.handlers.RotatingFileHandler",
 "level":"INFO",
 "formatter":"simple",
 "filename":"info.log",
 "maxBytes":"10485760",
 "backupCount":20,
 "encoding":"utf8"
 },
 "error_file_handler":{
 "class":"logging.handlers.RotatingFileHandler",
 "level":"ERROR",
 "formatter":"simple",
 "filename":"errors.log",
 "maxBytes":10485760,
 "backupCount":20,
 "encoding":"utf8"
 }
 },
 "loggers":{
 "my_module":{
 "level":"ERROR",
 "handlers":["info_file_handler"],
 "propagate":"no"
 }
 },
 "root":{
 "level":"INFO",
 "handlers":["console","info_file_handler","error_file_handler"]
 }
}

  通过JSON加载配置文件,然后通过logging.dictConfig配置logging,

import json
import logging.config
import os
 
def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"):
 path = default_path
 value = os.getenv(env_key,None)
 if value:
 path = value
 if os.path.exists(path):
 with open(path,"r") as f:
 config = json.load(f)
 logging.config.dictConfig(config)
 else:
 logging.basicConfig(level = default_level)
 
def func():
 logging.info("start func")
 
 logging.info("exec func")
 
 logging.info("end func")
 
if __name__ == "__main__":
 setup_logging(default_path = "logging.json")
 func()

  3.2 通过YAML文件配置

通过YAML文件进行配置,比JSON看起来更加简介明了,

version: 1
disable_existing_loggers: False
formatters:
 simple:
 format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
 console:
 class: logging.StreamHandler
 level: DEBUG
 formatter: simple
 stream: ext://sys.stdout
 info_file_handler:
 class: logging.handlers.RotatingFileHandler
 level: INFO
 formatter: simple
 filename: info.log
 maxBytes: 10485760
 backupCount: 20
 encoding: utf8
 error_file_handler:
 class: logging.handlers.RotatingFileHandler
 level: ERROR
 formatter: simple
 filename: errors.log
 maxBytes: 10485760
 backupCount: 20
 encoding: utf8
loggers:
 my_module:
 level: ERROR
 handlers: [info_file_handler]
 propagate: no
root:
 level: INFO
 handlers: [console,info_file_handler,error_file_handler]

  通过YAML加载配置文件,然后通过logging.dictConfig配置logging

import yaml
import logging.config
import os
 
def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):
 path = default_path
 value = os.getenv(env_key,None)
 if value:
 path = value
 if os.path.exists(path):
 with open(path,"r") as f:
 config = yaml.load(f)
 logging.config.dictConfig(config)
 else:
 logging.basicConfig(level = default_level)
 
def func():
 logging.info("start func")
 
 logging.info("exec func")
 
 logging.info("end func")
 
if __name__ == "__main__":
 setup_logging(default_path = "logging.yaml")
 func()

4 Reference

http://wjdadi-gmail-com.iteye.com/blog/1984354

关于 logging 的一些琐事

python logging 重复写日志问题

加载全部内容

相关教程
猜你喜欢
用户评论