Spring 异步注解@Async使用原理 Spring中异步注解@Async的使用、原理及使用时可能导致的问题及解决办法
程序员DMZ 人气:0前言
其实最近都在研究事务相关的内容,之所以写这么一篇文章是因为前面写了一篇关于循环依赖的文章:
然后,很多同学碰到了下面这个问题,添加了Spring提供的一个异步注解@Async
循环依赖无法被解决了,下面是一些读者的留言跟群里同学碰到的问题:
本着讲一个知识点就要讲明白、讲透彻的原则,我决定单独写一篇这样的文章对@Async
这个注解做一下详细的介绍,这个注解带来的问题远远不止循环依赖这么简单,如果对它不够熟悉的话建议慎用。
文章要点
@Async的基本使用
这个注解的作用在于可以让被标注的方法异步执行,但是有两个前提条件
配置类上添加@EnableAsync
注解需要异步执行的方法的所在类由Spring管理需要异步执行的方法上添加了@Async
注解
我们通过一个Demo体会下这个注解的作用吧
第一步,配置类上开启异步:
@EnableAsync @Configuration @ComponentScan("com.dmz.spring.async") public class Config { }
第二步,
[code]@Component // 这个类本身要被Spring管理public class DmzAsyncService { @Async // 添加注解表示这
@Component // 这个类本身要被Spring管理 public class DmzAsyncService { @Async // 添加注解表示这个方法要异步执行 public void testAsync(){ try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("testAsync invoked"); } }
第三步,测试异步执行
public class Main { public static void main(String[] args) { AnnotationConfigApplicationContext ac = new AnnotationConfigApplicationContext(Config.class); DmzAsyncService bean = ac.getBean(DmzAsyncService.class); bean.testAsync(); System.out.println("main函数执行完成"); } } // 程序执行结果如下: // main函数执行完成 // testAsync invoked
通过上面的例子我们可以发现,DmzAsyncService
中的testAsync
方法是异步执行的,那么这背后的原理是什么呢?我们接着分析
原理分析
我们在分析某一个技术的时候,最重要的事情是,一定一定要找到代码的入口,像Spring这种都很明显,入口必定是在@EnableAsync
这个注解上面,我们来看看这个注解干了啥事(本文基于5.2.x
版本)
@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @Documented // 这里是重点,导入了一个ImportSelector @Import(AsyncConfigurationSelector.class) public @interface EnableAsync { // 这个配置可以让程序员配置需要被检查的注解,默认情况下检查的就是@Async注解 Class<? extends Annotation> annotation() default Annotation.class; // 默认使用jdk代理 boolean proxyTargetClass() default false; // 默认使用Spring AOP AdviceMode mode() default AdviceMode.PROXY; // 在后续分析我们会发现,这个注解实际往容器中添加了一个 // AsyncAnnotationBeanPostProcessor,这个后置处理器实现了Ordered接口 // 这个配置主要代表了AsyncAnnotationBeanPostProcessor执行的顺序 int order() default Ordered.LOWEST_PRECEDENCE; }
上面这个注解做的最重要的事情就是导入了一个AsyncConfigurationSelector
,这个类的源码如下:
public class AsyncConfigurationSelector extends AdviceModeImportSelector<EnableAsync> { private static final String ASYNC_EXECUTION_ASPECT_CONFIGURATION_CLASS_NAME = "org.springframework.scheduling.aspectj.AspectJAsyncConfiguration"; @Override @Nullable public String[] selectImports(AdviceMode adviceMode) { switch (adviceMode) { // 默认会使用SpringAOP进行代理 case PROXY: return new String[] {ProxyAsyncConfiguration.class.getName()}; case ASPECTJ: return new String[] {ASYNC_EXECUTION_ASPECT_CONFIGURATION_CLASS_NAME}; default: return null; } } }
这个类的作用是像容器中注册了一个ProxyAsyncConfiguration
,这个类的继承关系如下:
我们先看下它的父类AbstractAsyncConfiguration
,其源码如下:
@Configuration public abstract class AbstractAsyncConfiguration implements ImportAware { @Nullable protected AnnotationAttributes enableAsync; @Nullable protected Supplier<Executor> executor; @Nullable protected Supplier<AsyncUncaughtExceptionHandler> exceptionHandler; // 这里主要就是检查将其导入的类上是否有EnableAsync注解 // 如果没有的话就报错 @Override public void setImportMetadata(AnnotationMetadata importMetadata) { this.enableAsync = AnnotationAttributes.fromMap( importMetadata.getAnnotationAttributes(EnableAsync.class.getName(), false)); if (this.enableAsync == null) { throw new IllegalArgumentException( "@EnableAsync is not present on importing class " + importMetadata.getClassName()); } } // 将容器中配置的AsyncConfigurer注入 // 异步执行嘛,所以我们可以配置使用的线程池 // 另外也可以配置异常处理器 @Autowired(required = false) void setConfigurers(Collection<AsyncConfigurer> configurers) { if (CollectionUtils.isEmpty(configurers)) { return; } if (configurers.size() > 1) { throw new IllegalStateException("Only one AsyncConfigurer may exist"); } AsyncConfigurer configurer = configurers.iterator().next(); this.executor = configurer::getAsyncExecutor; this.exceptionHandler = configurer::getAsyncUncaughtExceptionHandler; } }
再来看看ProxyAsyncConfiguration
这个类的源码
@Configuration @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public class ProxyAsyncConfiguration extends AbstractAsyncConfiguration { @Bean(name = TaskManagementConfigUtils.ASYNC_ANNOTATION_PROCESSOR_BEAN_NAME) @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public AsyncAnnotationBeanPostProcessor asyncAdvisor() { AsyncAnnotationBeanPostProcessor bpp = new AsyncAnnotationBeanPostProcessor(); // 将通过AsyncConfigurer配置好的线程池跟异常处理器设置到这个后置处理器中 bpp.configure(this.executor, this.exceptionHandler); Class<? extends Annotation> customAsyncAnnotation = this.enableAsync.getClass("annotation"); if (customAsyncAnnotation != AnnotationUtils.getDefaultValue(EnableAsync.class, "annotation")) { bpp.setAsyncAnnotationType(customAsyncAnnotation); } bpp.setProxyTargetClass(this.enableAsync.getBoolean("proxyTargetClass")); bpp.setOrder(this.enableAsync.<Integer>getNumber("order")); return bpp; } }
这个类本身是一个配置类,它的作用是向容器中添加一个AsyncAnnotationBeanPostProcessor
。到这一步我们基本上就可以明白了,@Async
注解的就是通过AsyncAnnotationBeanPostProcessor
这个后置处理器生成一个代理对象来实现异步的,接下来我们就具体看看AsyncAnnotationBeanPostProcessor
是如何生成代理对象的,我们主要关注一下几点即可:
- 是在生命周期的哪一步完成的代理?
- 切点的逻辑是怎么样的?它会对什么样的类进行拦截?
- 通知的逻辑是怎么样的?是如何实现异步的?
基于上面几个问题,我们进行逐一分析
是在生命周期的哪一步完成的代理?
我们抓住重点,AsyncAnnotationBeanPostProcessor
是一个后置处理器器,按照我们对Spring的了解,大概率是在这个后置处理器的postProcessAfterInitialization
方法中完成了代理,直接定位到这个方法,这个方法位于父类AbstractAdvisingBeanPostProcessor
中,具体代码如下:
public Object postProcessAfterInitialization(Object bean, String beanName) { // 没有通知,或者是AOP的基础设施类,那么不进行代理 if (this.advisor == null || bean instanceof AopInfrastructureBean) { return bean; } // 对已经被代理的类,不再生成代理,只是将通知添加到代理类的逻辑中 // 这里通过beforeExistingAdvisors决定是将通知添加到所有通知之前还是添加到所有通知之后 // 在使用@Async注解的时候,beforeExistingAdvisors被设置成了true // 意味着整个方法及其拦截逻辑都会异步执行 if (bean instanceof Advised) { Advised advised = (Advised) bean; if (!advised.isFrozen() && isEligible(AopUtils.getTargetClass(bean))) { if (this.beforeExistingAdvisors) { advised.addAdvisor(0, this.advisor); } else { advised.addAdvisor(this.advisor); } return bean; } } // 判断需要对哪些Bean进行来代理 if (isEligible(bean, beanName)) { ProxyFactory proxyFactory = prepareProxyFactory(bean, beanName); if (!proxyFactory.isProxyTargetClass()) { evaluateProxyInterfaces(bean.getClass(), proxyFactory); } proxyFactory.addAdvisor(this.advisor); customizeProxyFactory(proxyFactory); return proxyFactory.getProxy(getProxyClassLoader()); } return bean; }
果不其然,确实是在这个方法中完成的代理。接着我们就要思考,切点的过滤规则是什么呢?
切点的逻辑是怎么样的?
其实也不难猜到肯定就是类上添加了@Async
注解或者类中含有被@Async
注解修饰的方法。基于此,我们看看这个isEligible
这个方法的实现逻辑,这个方位位于AbstractBeanFactoryAwareAdvisingPostProcessor
中,也是AsyncAnnotationBeanPostProcessor
的父类,对应代码如下:
// AbstractBeanFactoryAwareAdvisingPostProcessor的isEligible方法 // 调用了父类 protected boolean isEligible(Object bean, String beanName) { return (!AutoProxyUtils.isOriginalInstance(beanName, bean.getClass()) && super.isEligible(bean, beanName)); } protected boolean isEligible(Object bean, String beanName) { return isEligible(bean.getClass()); } protected boolean isEligible(Class<?> targetClass) { Boolean eligible = this.eligibleBeans.get(targetClass); if (eligible != null) { return eligible; } if (this.advisor == null) { return false; } // 这里完成的判断 eligible = AopUtils.canApply(this.advisor, targetClass); this.eligibleBeans.put(targetClass, eligible); return eligible; }
实际上最后就是根据advisor来确定是否要进行代理,在Spring中基于xml的AOP的详细步骤这篇文章中我们提到过,advisor实际就是一个绑定了切点的通知,那么AsyncAnnotationBeanPostProcessor
这个advisor是什么时候被初始化的呢?我们直接定位到AsyncAnnotationBeanPostProcessor
的setBeanFactory
方法,其源码如下:
public void setBeanFactory(BeanFactory beanFactory) { super.setBeanFactory(beanFactory); // 在这里new了一个AsyncAnnotationAdvisor AsyncAnnotationAdvisor advisor = new AsyncAnnotationAdvisor(this.executor, this.exceptionHandler); if (this.asyncAnnotationType != null) { advisor.setAsyncAnnotationType(this.asyncAnnotationType); } advisor.setBeanFactory(beanFactory); // 完成了初始化 this.advisor = advisor; }
我们来看看AsyncAnnotationAdvisor
中的切点匹配规程是怎么样的,直接定位到这个类的buildPointcut
方法中,其源码如下:
protected Pointcut buildPointcut(Set<Class<? extends Annotation>> asyncAnnotationTypes) { ComposablePointcut result = null; for (Class<? extends Annotation> asyncAnnotationType : asyncAnnotationTypes) { // 就是根据这两个匹配器进行匹配的 Pointcut cpc = new AnnotationMatchingPointcut(asyncAnnotationType, true); Pointcut mpc = new AnnotationMatchingPointcut(null, asyncAnnotationType, true); if (result == null) { result = new ComposablePointcut(cpc); } else { result.union(cpc); } result = result.union(mpc); } return (result != null ? result : Pointcut.TRUE); }
代码很简单,就是根据cpc跟mpc两个匹配器来进行匹配的,第一个是检查类上是否有@Async注解,第二个是检查方法是是否有@Async注解。
那么,到现在为止,我们已经知道了它在何时创建代理,会为什么对象创建代理,最后我们还需要解决一个问题,代理的逻辑是怎么样的,异步到底是如何实现的?
通知的逻辑是怎么样的?是如何实现异步的?
前面也提到了advisor是一个绑定了切点的通知,前面分析了它的切点,那么现在我们就来看看它的通知逻辑,直接定位到AsyncAnnotationAdvisor
中的buildAdvice
方法,源码如下:
protected Advice buildAdvice( @Nullable Supplier<Executor> executor, @Nullable Supplier<AsyncUncaughtExceptionHandler> exceptionHandler) { AnnotationAsyncExecutionInterceptor interceptor = new AnnotationAsyncExecutionInterceptor(null); interceptor.configure(executor, exceptionHandler); return interceptor; }
简单吧,加了一个拦截器而已,对于interceptor类型的对象,我们关注它的核心方法invoke
就行了,代码如下:
public Object invoke(final MethodInvocation invocation) throws Throwable { Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null); Method specificMethod = ClassUtils.getMostSpecificMethod(invocation.getMethod(), targetClass); final Method userDeclaredMethod = BridgeMethodResolver.findBridgedMethod(specificMethod); // 异步执行嘛,先获取到一个线程池 AsyncTaskExecutor executor = determineAsyncExecutor(userDeclaredMethod); if (executor == null) { throw new IllegalStateException( "No executor specified and no default executor set on AsyncExecutionInterceptor either"); } // 然后将这个方法封装成一个 Callable对象传入到线程池中执行 Callable<Object> task = () -> { try { Object result = invocation.proceed(); if (result instanceof Future) { return ((Future<?>) result).get(); } } catch (ExecutionException ex) { handleError(ex.getCause(), userDeclaredMethod, invocation.getArguments()); } catch (Throwable ex) { handleError(ex, userDeclaredMethod, invocation.getArguments()); } return null; }; // 将任务提交到线程池 return doSubmit(task, executor, invocation.getMethod().getReturnType()); }
导致的问题及解决方案
问题1:循环依赖报错
就像在这张图里这个读者问的问题,
分为两点回答:
第一:循环依赖为什么不能被解决?
这个问题其实很简单,在《讲一讲Spring中的循环依赖》这篇文章中我从两个方面分析了循环依赖的处理流程
简单对象间的循环依赖处理AOP对象间的循环依赖处理
按照这种思路,@Async
注解导致的循环依赖应该属于AOP对象间的循环依赖
,也应该能被处理。但是,重点来了,解决AOP对象间循环依赖的核心方法是三级缓存,如下:
在三级缓存缓存了一个工厂对象,这个工厂对象会调用getEarlyBeanReference
方法来获取一个早期的代理对象的引用,其源码如下:
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) { Object exposedObject = bean; if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { for (BeanPostProcessor bp : getBeanPostProcessors()) { // 看到这个判断了吗,通过@EnableAsync导入的后置处理器 // AsyncAnnotationBeanPostProcessor根本就不是一个SmartInstantiationAwareBeanPostProcessor // 这就意味着即使我们通过AsyncAnnotationBeanPostProcessor创建了一个代理对象 // 但是早期暴露出去的用于给别的Bean进行注入的那个对象还是原始对象 if (bp instanceof SmartInstantiationAwareBeanPostProcessor) { SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp; exposedObject = ibp.getEarlyBeanReference(exposedObject, beanName); } } } return exposedObject; }
看完上面的代码循环依赖的问题就很明显了,因为早期暴露的对象跟最终放入容器中的对象不是同一个,所以报错了。报错的具体位置我在谈谈我对Spring Bean 生命周期的理解 文章末尾已经分析过了,本文不再赘述
解决方案
就以上面读者给出的Demo为例,只需要在为B注入A时添加一个@Lazy
注解即可
@Component public class B implements BService { @Autowired @Lazy private A a; public void doSomething() { } }
这个注解的作用在于,当为B注入A时,会为A生成一个代理对象注入到B中,当真正调用代理对象的方法时,底层会调用getBean(a)
去创建A对象,然后调用方法,这个注解的处理时机是在org.springframework.beans.factory.support.DefaultListableBeanFactory#resolveDependency
方法中,处理这个注解的代码位于org.springframework.context.annotation.ContextAnnotationAutowireCandidateResolver#buildLazyResolutionProxy
,这些代码其实都在我之前的文章中分析过了
《Spring杂谈 | Spring中的AutowireCandidateResolver》
《谈谈Spring中的对象跟Bean,你知道Spring怎么创建对象的吗?》
所以本文不再做详细分析
问题2:默认线程池不会复用线程
我觉得这是这个注解最坑的地方,没有之一!我们来看看它默认使用的线程池是哪个,在前文的源码分析中,我们可以看到决定要使用线程池的方法是org.springframework.aop.interceptor.AsyncExecutionAspectSupport#determineAsyncExecutor
。其源码如下:
protected AsyncTaskExecutor determineAsyncExecutor(Method method) { AsyncTaskExecutor executor = this.executors.get(method); if (executor == null) { Executor targetExecutor; // 可以在@Async注解中配置线程池的名字 String qualifier = getExecutorQualifier(method); if (StringUtils.hasLength(qualifier)) { targetExecutor = findQualifiedExecutor(this.beanFactory, qualifier); } else { // 获取默认的线程池 targetExecutor = this.defaultExecutor.get(); } if (targetExecutor == null) { return null; } executor = (targetExecutor instanceof AsyncListenableTaskExecutor ? (AsyncListenableTaskExecutor) targetExecutor : new TaskExecutorAdapter(targetExecutor)); this.executors.put(method, executor); } return executor; }
最终会调用到org.springframework.aop.interceptor.AsyncExecutionInterceptor#getDefaultExecutor
这个方法中
protected Executor getDefaultExecutor(@Nullable BeanFactory beanFactory) { Executor defaultExecutor = super.getDefaultExecutor(beanFactory); return (defaultExecutor != null ? defaultExecutor : new SimpleAsyncTaskExecutor()); }
可以看到,它默认使用的线程池是SimpleAsyncTaskExecutor
。我们不看这个类的源码,只看它上面的文档注释,如下:
主要说了三点
- 为每个任务新起一个线程
- 默认线程数不做限制
- 不复用线程
就这三点,你还敢用吗?只要你的任务耗时长一点,说不定服务器就给你来个OOM
。
解决方案
最好的办法就是使用自定义的线程池,主要有这么几种配置方法
在之前的源码分析中,我们可以知道,可以通过AsyncConfigurer
来配置使用的线程池
如下:
public class DmzAsyncConfigurer implements AsyncConfigurer { @Override public Executor getAsyncExecutor() { // 创建自定义的线程池 } }
直接在@Async注解中配置要使用的线程池的名称
如下:
public class A implements AService { private B b; @Autowired public void setB(B b) { System.out.println(b); this.b = b; } @Async("dmzExecutor") public void doSomething() { } }
@EnableAsync @Configuration @ComponentScan("com.dmz.spring.async") @Aspect public class Config { @Bean("dmzExecutor") public Executor executor(){ // 创建自定义的线程池 return executor; } }
总结
本文主要介绍了Spring中异步注解的使用、原理及可能碰到的问题,针对每个问题文中也给出了方案。希望通过这篇文章能帮助你彻底掌握@Async
注解的使用,知其然并知其所以然!
加载全部内容