几款好用的python工具库(小结)
ztenv 人气:01、Lux
Lux 是一个 Python 库,它可以自动化的进行数据探索,让你能更轻松的玩转数据科学。Lux 旨在与 Pandas 紧密集成,可以按原样使用,而无需修改现有的Pandas代码。要启用Lux,只需将 import lux 与 Pandas import 语句一起添加即可。
import lux import pandas as pd
官方链接
https://lux-api.readthedocs.io/en/latest/source/getting_started/installation.html
安装方法
# PyPI安装Python Lux API pip install lux-api #要安装小部件,我们需要安装webpack npm install --save-dev webpack webpack-cli # npm安装Lux Jupyter小部件 npm i lux-widget
2、Translators
Translators 集成了谷歌、必应、有道、百度等多个翻译平台 API,支持上百种语言翻译,使用便捷,配置灵活。对于需要批量翻译的场景,绝对是提效利器。
安装
# Windows, Mac, Linux pip install translators --upgrade # Linux javascript runtime environment: sudo yum -y install nodejs
示例展示
import translators as ts wyw_text = '季姬寂,集鸡,鸡即棘鸡。棘鸡饥叽,季姬及箕稷济鸡。' chs_text = '季姬感到寂寞,罗集了一些鸡来养,鸡是那种出自荆棘丛中的野鸡。野鸡饿了唧唧叫,季姬就拿竹箕中的谷物喂鸡。' # input languages print(ts.deepl(wyw_text)) # default: from_language='auto', to_language='en' ## output language_map print(ts._deepl.language_map) # professional field print(ts.baidu(wyw_text, professional_field='common')) # ('common','medicine','electronics','mechanics') # requests print(ts.youdao(wyw_text, sleep_seconds=5, proxies={}, use_cache=True)) # host service print(ts.google(wyw_text, if_use_cn_host=True)) print(ts.bing(wyw_text, if_use_cn_host=False))
Github 官方链接
https://github.com/UlionTse/translators
3、TextShot
推荐一款高精度免费 OCR 工具:TextShot。开发这款工具仅仅使用 139 行 Python 代码完成,就可快速提取截屏文本内容并复制到剪贴板。且适用于 Windows,macOS 和 Linux 系统。
4、Fancy-NLP
Fancy-NLP 是由腾讯商品广告策略组团队构建的用于建设商品画像的文本知识挖掘工具,其支持诸如实体提取、文本分类和文本相似度匹配等多种常见 NLP 任务。与当前业界常用框架相比,其能够支持用户进行快速的功能实现。
在当前的商品广告业务场景中,我们利用该工具快速挖掘海量商品数据的特征,从而支持广告商品推荐等模块中。
安装方式
pip install fancy-nlp
示例代码
输出文本中的实体信息
from fancy_nlp.applications import NER ner_app = NER() ner_app.analyze('同济大学位于上海市杨浦区,校长为陈杰')
结果产出
{'text': '同济大学位于上海市杨浦区,校长为陈杰',
'entities': [
{'name': '同济大学',
'type': 'ORG',
'score': 1.0,
'beginOffset': 0,
'endOffset': 4},
{'name': '上海市',
'type': 'LOC',
'score': 1.0,
'beginOffset': 6,
'endOffset': 9},
{'name': '杨浦区',
'type': 'LOC',
'score': 1.0,
'beginOffset': 9,
'endOffset': 12},
{'name': '陈杰',
'type': 'PER',
'score': 1.0,
'beginOffset': 16,
'endOffset': 18}]}
此外还可以进行文本类别识别、文本意图识别,测试后效果真的不错噢
Github 官方链接
https://github.com/boat-group/fancy-nlp
5、latexify_py
latexify_py,可快速将 Python 函数快速转为 LaTeX 数学公式。对于有公式需要处理的小伙伴,绝对是福利!作者是 Google Brain 的软件工程师 Yusuke Oda,目前主要负责自然语言处理,语音处理,软件工程和机器学习等工程。
Github 官方链接
https://github.com/google/latexify_py
加载全部内容