matplotlib 三维图表绘制方法简介
アハハハ君 人气:0本文着重讲解了matplotlib 三维图表绘制方法简介,文中通过代码实例讲解的非常细致,对大家的工作和学习具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
1. python三维图表绘制方法简介
python三维图表的绘制算是二维图表的一个进阶版本,本质上和二维图表的绘制并无差别,唯一的区别在于使用的库略有差异。
相较于二维图表使用的pyplot库,三维图表的绘制使用的是Axes3D库。
库引入语句为:
from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D
上下的操作就和二维图表绘制大差不差了,首先定义三维画布,然后向里面绘制三维图表,最后打印出结果即可。
下面,我们通过一些实例来进行说明。
2. 实例说明
1. 三维曲线图绘制
首先,我们来看一下三维曲线图的绘制。
三维曲线图的绘制和二维曲线图的绘制方法极其相似,只是我们需要做以下两点修改:
- 将画布修改为三维坐标系;
- 传参时同时传入x、y、z三个维度的坐标信号。
另外,plot函数需要修改三维曲线绘制的Axes3D.plot
函数。
给出代码样例如下:
import numpy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D theta = numpy.linspace(0, 3.14*4, 200) r = numpy.linspace(0, 1, 200) x = r * numpy.cos(theta) y = r * numpy.sin(theta) z = numpy.linspace(0, 2, 200) fig = plt.figure(figsize=(12, 7)) ax1 = plt.axes(projection='3d') ax1.plot(x, y, z) plt.show()
运行即可得到一张三维曲线图。
2. 三维散点图绘制
下面,我们来看一下三维空间中的散点图绘制方法。
其方法其实挺简单的,就是先绘制x、y面的网点坐标,计算相应的z轴高度,而后创建一张三维图,然后通过Axes3D.scatter
函数进行散点图绘制即可。
我们给出具体的代码样例如下:
import numpy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x = numpy.linspace(-2, 2, 10) y = numpy.linspace(-2, 2, 10) xx, yy = numpy.meshgrid(x, y) z = xx ** 2 - yy ** 2 fig = plt.figure(figsize=(12, 7)) ax1 = plt.axes(projection='3d') # 创建三维坐标轴 ax1.scatter(xx, yy, z) # 绘制三维散点图 plt.show()
运行即可得到三维散点图。
3. 三维曲面图绘制
三维曲面图的绘制与三维极其类似,只需要将Axes3D.scatter
函数替换为Axes3D.plot_surface
函数即可。
我们就不再多做解释了,直接给出代码样例如下:
import numpy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x = numpy.linspace(-2, 2, 10) y = numpy.linspace(-2, 2, 10) xx, yy = numpy.meshgrid(x, y) print(xx.shape, yy.shape) z = xx ** 2 - yy ** 2 fig = plt.figure(figsize=(12, 7)) ax1 = plt.axes(projection='3d') # 创建三维坐标轴 ax1.plot_surface(xx, yy, z) # 绘制三维曲面图 plt.show()
运行即可得到三维曲面图。
3. 参考链接
加载全部内容