Python机器学习之随机梯度下降法的实现
街 三 仔 人气:0随机梯度下降法
为什么使用随机梯度下降法?
如果当我们数据量和样本量非常大时,每一项都要参与到梯度下降,那么它的计算量时非常大的,所以我们可以采用随机梯度下降法。
随机梯度下降法中的学习率必须是随着循环的次数增加而递减的。如果eta取一样的话有可能在非常接近我们的最优值时会跳过,所以随着迭代次数的增加,学习率eta要随之减小,我们可以用模拟退火的思想实现(如下图所示),t0和t1是一个常数,定值,其通常是根据经验取得一些值。
随机梯度下降法的实现
随机梯度下降法的公式如下图所示,其中挑出一个样本出来计算。
先创建x,y,以下取10000个样本
import numpy as np m = 10000 x = np.random.random(size=m) y = x*3 + 4 + np.random.normal(size=m)
写入函数
def dj_sgd(theta, x_i, y_i): # 传入一个样本,获取对应的梯度 return x_i.T.dot(x_i.dot(theta)-y_i)*2 # MSE def sgd(X_b, y, initial_theta, n_iters): # 求出整个theta的函数 def learning_rate(i_iter): t0 = 5 t1 = 50 return t0/(i_iter+t1) theta = initial_theta i_iter = 1 while i_iter <= n_iters: index = np.random.randint(0, len(X_b)) x_i = X_b[index] y_i = y[index] gradient = dj_sgd(theta, x_i, y_i) # 求导数 theta = theta - gradient*learning_rate(i_iter) # 求步长 i_iter += 1 return theta
调用函数,求出截距和系数
以上随机梯度的缺点是不能照顾到每一点,因此需要进行改进。
以下对其中的函数进行修改。
def dj_sgd(theta, x_i, y_i): # 传入一个样本,获取对应的梯度 return x_i.T.dot(x_i.dot(theta)-y_i)*2 # MSE def sgd(X_b, y, initial_theta, n_iters): # 求出整个theta的函数 def learning_rate(i_iter): t0 = 5 t1 = 50 return t0/(i_iter+t1) theta = initial_theta m = len(X_b) for cur_iter in range(n_iters): # 每一次循环都把样本打乱,n_iters的代表整个样本看几轮 random_indexs = np.random.permutation(m) X_random = X_b[random_indexs] y_random = y[random_indexs] for i in range(m): theta = theta - learning_rate(cur_iter*m+i) * (dj_sgd(theta, X_random[i], y_random[i])) return theta
与前边运算结果进行对比,其耗时更长。
加载全部内容