亲宝软件园·资讯

展开

keras.layers.Conv2D()函数参数用法及说明

SP FA 人气:0

tf.keras.layers.Conv2D() 函数

Conv2D (二维卷积层)

这一层创建了一个卷积核,它与这一层的输入卷积以产生一个输出张量

当使用此层作为模型的第一层时,提供关键字参数 input_shape (整数元组,不包括样本轴,不需要写batch_size)

def __init__(self, filters,
             kernel_size,
             strides=(1, 1),
             padding='valid',
             data_format=None,
             dilation_rate=(1, 1),
             activation=None,
             use_bias=True,
             kernel_initializer='glorot_uniform',
             bias_initializer='zeros',
             kernel_regularizer=None,
             bias_regularizer=None,
             activity_regularizer=None,
             kernel_constraint=None,
             bias_constraint=None,
             **kwargs):

参数

int 类型,表示卷积核个数,filters 影响的是最后输入结果的的第四个维度的变化

import tensorflow as tf
from tensorflow.keras.layers import Conv2D

input_shape = (4, 600, 600, 3)
input = tf.random.normal(input_shape)
x = keras.layers.Conv2D(64, (1, 1), strides=(1, 1), name='conv1')(input)
print(x.shape)

OUTPUT:
(4, 600, 600, 64)

表示卷积核的大小,如果是方阵可以直接写成一个数,影响的是输出结果中间两个数据的维度

x = Conv2D(64, (2, 2), strides=(1, 1), name='conv1')(input)
#or Conv2D(64, 2, strides=(1, 1), name='conv1')(input)
print(x.shape)

OUTPUT:
(4, 599, 599, 64)

tuple (int, int) 步长,同样会影响输出的中间两个维度,值得注意的是,括号里的数据可以不一致,分别控制横坐标和纵坐标

x = Conv2D(64, 1, strides=(2, 2), name='conv1')(input)
print(x.shape)

OUTPUT:
(4, 300, 300, 64)

是否对周围进行填充,same 即使通过 kernel_size 缩小了维度,但是四周会填充 0,保持原先的维度;valid 表示存储不为 0 的有效信息

a = Conv2D(64, 1, strides=(2, 2), padding="same" , name='conv1')(input)
b = Conv2D(64, 3, strides=(2, 2), padding="same" , name='conv1')(input)
c = Conv2D(64, 3, strides=(1, 1), padding="same" , name='conv1')(input)
d = Conv2D(64, 3, strides=(1, 1), padding="valid", name='conv1')(input)
print(a.shape, b.shape, c.shape, d.shape)

OUTPUT:
(4, 300, 300, 64)
(4, 300, 300, 64)
(4, 600, 600, 64)
(4, 598, 598, 64)

激活函数,如果 activation 不是 None,则它会应用于输出

boolean,表示是否使用偏置量,如果 use_bias 为真,则创建一个偏置项并添加到输出中

用于规定 input_shape 的格式

如果不填写,默认是 channels_last,否则可以填写 channels_first。前者的会把 input_shape 这个三元组给识别成 (batch_size, height, width, channels),后者则会识别成 (batch_size, channels, height, width) 不过样本轴 (batch_size) 不需要自己填写

int, tuple(int, int), list[int, int],指定用于扩展卷积的扩展率。可以是单个整数,为所有空间维度指定相同的值。该参数定义了卷积核处理数据时各值的间距。

在相同的计算条件下,该参数提供了更大的感受野。该参数经常用在实时图像分割中。当网络层需要较大的感受野,但计算资源有限而无法提高卷积核数量或大小时,可以考虑使用。

返回一个四维的张量

第一个数是 batch 的大小,也就是有几组数据;后三个数表示一个张量的大小

tf.keras.layers.conv2D学习

参数描述
inputs把上一层的输出作为输入(直接将上一层作为参数输入即可)
input_shape当作为模型的第一层时,需要指出输入的形状(samples,rows,cols,channels) ,只指出后三维即可,第一维度按batch_size自动指定
filters卷积过滤器的数量,对应输出的维数--卷积核的数目(即输出的维度)
kernel_size整数,过滤器的大小,如果为一个整数则宽和高相同.单个整数或由两个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数,则表示在各个空间维度的相同长度
strides横向和纵向的步长,如果为一个整数则横向和纵向相同.单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。任何不为1的strides均与任何不为1的dilation_rata均不兼容
padding补0策略,为“valid”, “same”。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。
data_formatchannels_last为(batch,height,width,channels),channels_first为(batch,channels,height,width).以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channels_last”。
dilation_rate 
activation激活函数,如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
use_bias是否使用偏差量,布尔值
kernel_initializer卷积核的初始化。
bias_initializer偏差向量的初始化。如果是None,则使用默认的初始值。
kernel_regularizer卷积核的正则项
bias_regularizer偏差向量的正则项
activity_regularizer输出的正则函数
bias_constraint映射函数,当偏差向量被Optimizer更新后应用到偏差向量上。
trainableBoolean类型。
name字符串,层的名字。
reuseBoolean类型,表示是否可以重复使用具有相同名字的前一层的权重。
keras.layers.convolutional.Conv2D(filters, # 卷积核数目
                                  kernel_size, # 过滤器的大小
                                  strides(1,1),  # 步长
                                  padding='valid', # 边界处理
                                  data_format=None, 
                                  dilation_rate=(1,1), 
                                  activation=None, # 激活函数
                                  use_bias=True, #是否使用偏置量,布尔值
                                  kernel_initializer='glorot_uniform',
                                  bias_initializer='zeros',
                                  kernel_regularizer=None,
                                  bias_regularizer=None,
                                  activity_regularizer=None,
                                  kernel_constraint=None,
                                  bias_constraint=None)
# 设置训练模型  
# input_shape 指出输入的形状(samples,rows,cols,channels) ,只指出后三维即可,第一维度按batch_size自动指定
    # x_train (60000,28,28,1)  >> input_shape=(60000,28,28,1)  第一维可以省略,自动根据batch_size指定
    tf.keras.layers.Conv2D(filters=16,kernel_size=(5,5),activation="relu",input_shape=(28,28,1),padding="valid"),

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论