一篇文章彻底搞懂C++常见容器
头发够用的程序员 人气:01.概述
C++容器属于STL(标准模板库)中的一部分(六大组件之一),从字面意思理解,生活中的容器用来存放(容纳)水或者食物,东西,而C++中的容器用来存放各种各样的数据,不同的容器具有不同的特性,下图(思维导图)中列举除了常见的几种C++容器,而这部分C++的容器与python中的序列有很多相似之处,也许这也很好地印证了江湖上“C生万物”的说法。因本人是学完python后才学C++的,突然有种:“山重水复疑无路,柳暗花明又一村”的感觉。因为python是偏向于顶层的语言,那时候什么迭代器,生成器之类的东西都不是非常清楚,然后在C++中又遇到了类似内容,便有了更好的理解,也许这就是很多人不建议初学者学习python的原因吧。
2.容器详解
2.1vector(向量)
从这个命名就可以很好地理解,在线性代数中,向量是一维的结构,而在容器中,向量也是看似一维的存储形式。可以理解为长度可变的数组。只不过在尾部增删数据的时候效率最高,其他位置增删数据则效率较低。举个例子(开胃菜):
#include <iostream> #include <vector> using namespace std; // 程序的主函数 int main() { vector<int> V; V.push_back(1); V.push_back(2); V.push_back(1); V.push_back(2); cout << V[0] << endl; system("pause"); return 0; }
打印输出:1
。
从上面的例子可以看出,向量和数组的用法极其类似。当然,容器还有一个极其好用的功能,就是容器的嵌套使用。
#include <iostream> #include <vector> using namespace std; // 程序的主函数 int main() { vector<vector<int>> V; vector<int> sub_V; sub_V.push_back(1); sub_V.push_back(2); sub_V.push_back(1); V.push_back(sub_V); cout << V[0][1] << endl; system("pause"); return 0; }
打印输出2
这个时候的向量可以看作是一个二维数组,当然比二维数组更加灵活、强大。
当然向量容器还有其他更加丰富的操作。比如:
int size = vec1.size(); //元素个数 bool isEmpty = vec1.empty(); //判断是否为空 vec1.insert(vec1.end(),5,3); //从vec1.back位置插入5个值为3的元素 vec1.pop_back(); //删除末尾元素 vec1.erase(vec1.begin(),vec1.end());//删除之间的元素,其他元素前移 cout<<(vec1==vec2)?true:false; //判断是否相等==、!=、>=、<=... vector<int>::iterator iter = vec1.begin(); //获取迭代器首地址 vector<int>::const_iterator c_iter = vec1.begin(); //获取const类型迭代器 vec1.clear(); //清空元素
举个最常见的例子:
#include <iostream> #include <vector> using namespace std; // 程序的主函数 int main() { vector<int> V; V.push_back(1); V.push_back(2); V.push_back(3); for (vector<int>::iterator it = V.begin(); it != V.end(); it++) cout << *it << " "; cout << endl; cout << "==========================" << endl; V.insert(V.begin() + 2,10); for (vector<int>::iterator it = V.begin(); it != V.end(); it++) cout << *it << " "; system("pause"); return 0; }
注意如果不是在其尾部插入数据,要传入插入位置的迭代器。
打印输出:
2.2deque(双端队列)
deque,顾名思义,从前后两端都可以进行数据的插入和删除操作,同时支持数据的快速随机访问。举个例子:
#include <iostream> #include <deque> using namespace std; // 程序的主函数 int main() { deque<int> D; D.push_back(1); D.push_back(2); D.push_back(3); for (deque<int>::iterator it = D.begin(); it != D.end(); it++) cout << *it << " "; cout << endl; cout << "============在其索引2的位置插入10:" << endl; D.insert(D.begin() + 2,10); for (deque<int>::iterator it = D.begin(); it != D.end(); it++) cout << *it << " "; cout << endl; cout << "============在其头部插入0:" << endl; D.push_front(0); for (deque<int>::iterator it = D.begin(); it != D.end(); it++) cout << *it << " "; cout << endl; cout << "============在其头部弹出0:" << endl; D.pop_front(); for (deque<int>::iterator it = D.begin(); it != D.end(); it++) cout << *it << " "; system("pause"); return 0; }
打印输出:
2.3list(列表)
列表是用双向链表实现的,所谓的双向链表,指的是既可以从链表的头部开始搜索找到链表的尾部,也可以进行反向搜索,从尾部到头部。这使得list在任何位置插入和删除元素都变得非常高效,但是随机访问速度变得非常慢,因为保存的地址是不连续的,所以list没有重载[]
运算符,也就是说,访问list元素的时候,再也不像向量和双端队列那么方便,不可以像我们以前在C语言的时候,访问数组那样对其元素进行访问。
一起来看个例子:
#include <iostream> #include <list> using namespace std; // 程序的主函数 int main() { //list的创建和初始化 list<int> lst1; //创建空list list<int> lst2(3); //创建含有三个元素的list list<int> lst3(3, 2); //创建含有三个元素的值为2的list list<int> lst4(lst3); //使用lst3初始化lst4 list<int> lst5(lst3.begin(), lst3.end()); //同lst4 cout << "lst4中的元素有:" << endl; for (list<int>::iterator it = lst4.begin(); it != lst4.end(); it++) cout << *it << " "; cout << endl; cout << "lst5中的元素有:" << endl; for (list<int>::iterator it = lst5.begin(); it != lst5.end(); it++) cout << *it << " "; cout << endl; system("pause"); return 0; }
运行,打印输出:
然后再来看一个元素的添加,排序的例子。
#include <iostream> #include <list> #include <vector> using namespace std; // 程序的主函数 int main() { //list的创建和初始化 list<int> lst1; //创建空list for(int i = 0; i < 10; i++) lst1.push_back(9-i); //添加值 cout << "lst1中的元素有:" << endl; for (list<int>::iterator it = lst1.begin(); it != lst1.end(); it++) cout << *it << " "; cout << endl; cout << "对lst1中的元素进行排序:" << endl; lst1.sort(); for (list<int>::iterator it = lst1.begin(); it != lst1.end(); it++) cout << *it << " "; cout << endl; cout << "在索引为5的地方插入999:" << endl; list<int>::iterator insert_it = lst1.begin(); for (int i = 0; i < 5; i++) insert_it++; lst1.insert(insert_it, 3, 999); for (list<int>::iterator it = lst1.begin(); it != lst1.end(); it++) cout << *it << " "; cout << endl; cout << "删除相邻重复元素后:" << endl; lst1.unique(); //删除相邻重复元素 for (list<int>::iterator it = lst1.begin(); it != lst1.end(); it++) cout << *it << " "; cout << endl; system("pause"); return 0; }
运行后,打印输出:
特别注意,由于list的底层是双向链表,因此insert操作无法直接像向量和双端队列一样直接插入数据,只能通过迭代器的自加移动到相应位置,再插入数据。
2.4 array(数组)
array和C语言中的数组没有太大的区别,建立后只能存储一种类型的数据,且不能改变大小。比较简单,举个例子:
#include <iostream> #include <string> #include <array> using namespace std; // 程序的主函数 int main() { array<int, 4> arr = {1, 3, 2}; cout << "arr values:" << std::endl; for (array<int, 4>::iterator it = arr.begin(); it != arr.end(); it++) { cout << *it << " "; } cout << endl; cout << "sizeof(arr) = " << sizeof(arr) << endl; cout << "size of arr = " << arr.size() << endl; cout << "max size arr = " << arr.max_size() << endl; cout << "empty = " << (arr.empty() ? "no" : "yes") << endl; system("pause"); return 0; }
当然,最常见的,array也支持嵌套,可以采用这样的方式来构建二维(多维)数组,由于比较简单,就不举例了。
2.5 string(字符串)
与vector相似的容器。专门用于保存字符。随机访问快。尾部插入删除快。在部分说法中,string不算是STL容器,但是为了内容的完整性,我们还是将其一并学习。
#include <iostream> #include <string> using namespace std; // 程序的主函数 int main() { string s1 = "Bob:"; string s2("hellow world!"); for (int i = 0; i < s1.size(); i++) { cout << s1[i]; } cout << endl; for (int i = 0; i < s2.size(); i++) { cout << s2[i]; } cout << endl; cout << s1 + s2 << endl; s1.insert(s1.size(),"you say "); cout << s1 + s2 << endl; system("pause"); return 0; }
运行,打印输出如下:
通过以上例子可以发现,与我们在C语言中学习的string并没有多少区别,其实本身区别也不是很大,只是在创建了之后还可以添加元素(盲猜是新创建了一个同名的string,仅此而已),且添加元素的方式也很简单,直接通过insert(插入位置,需要添加的字符串)
这样的格式添加即可。上面一个例子是从末尾添加的,所以索引肯定是s1.size()
。当然还有字符串的相加,字符串的比较等,都是属于更为基础的内容,没有添加到例子当中去,感兴趣的同学可以自己找资料去学习。
2.6 map(映射)
map容器和python中的字典非常类似,或者说一模一样。都是通过键值对的方式来存储和访问数据的,底层是通过红黑树来实现的。先来看个map的创建以及初始化的例子。
#include <iostream> #include <map> #include <string> using namespace std; // 程序的主函数 int main() { //map的创建和初始化 //第一种:用insert函数插入pair数据: map<int, string> my_map; my_map.insert(pair<int, string>(1, "first")); my_map.insert(pair<int, string>(2, "second")); //第二种:用insert函数插入value_type数据: my_map.insert(map<int, string>::value_type(3, "first")); my_map.insert(map<int, string>::value_type(4, "second")); //第三种:用数组的方式直接赋值: my_map[5] = "first"; my_map[6] = "second"; map<int, string>::iterator it; //迭代器遍历 for (it = my_map.begin(); it != my_map.end(); it++) cout << it->first << "->" <<it->second << endl; system("pause"); return 0; }
运行,打印输出如下结果:
从以上结果可以看出,其中数组直接赋值的方法最简单直接,最容易理解。当然map保存的是键值对,所以前面的int类型数据(key)并不代表其位置。比方说,我们将其中的int修改为float也是可以的。代码如下:
#include <iostream> #include <map> #include <string> using namespace std; // 程序的主函数 int main() { //map的创建和初始化 //第一种:用insert函数插入pair数据: map<float, string> my_map; my_map.insert(pair<float, string>(1, "first")); my_map.insert(pair<float, string>(2, "second")); //第二种:用insert函数插入value_type数据: my_map.insert(map<float, string>::value_type(3, "first")); my_map.insert(map<float, string>::value_type(4, "second")); //第三种:用数组的方式直接赋值: my_map[5.3] = "first"; my_map[6.6] = "second"; map<float, string>::iterator it; //迭代器遍历 for (it = my_map.begin(); it != my_map.end(); it++) cout << it->first << "->" <<it->second << endl; system("pause"); return 0; }
当然,同其他的容器类型一样,map同样支持嵌套,比如:
#include <iostream> #include <map> #include <string> using namespace std; // 程序的主函数 int main() { //map的嵌套用法 map<int,map<int,string>> my_map; my_map[1][1] = "张三"; my_map[1][2] = "李四"; my_map[1][3] = "王五"; for (map<int, map<int, string>>::iterator it = my_map.begin(); it != my_map.end(); it++) { for (map<int, string>::iterator in_it = it->second.begin(); in_it != it->second.end(); in_it++) { cout << it->first << "年级" << in_it->first << "号同学:" << in_it->second << endl; } } cout << endl; system("pause"); return 0; }
运行,打印输出如下:
还有一个很重要的问题,就是map元素的删除。map元素的删除有好多种方法,下面仅仅列举 常见几种。
#include <iostream> #include <map> #include <string> using namespace std; void printMap(const map<string, int>& students) { for (auto ii = students.begin(); ii != students.end(); ii++) { cout << "姓名:" << ii->first << " \t诗作: " << ii->second << "篇" << endl; } cout << endl; } int main(int argc, char* argv[]) { map<string, int> students; students["李白"] = 346; students["杜甫"] = 300; students["王维"] = 200; students["李商隐"] = 113; students["杜牧"] = 156; cout << "原map:" << endl; printMap(students); students.erase("李白"); cout << "删除 李白 后:" << endl; printMap(students); students.erase(std::begin(students)); cout << "删除第一个元素后:" << endl; printMap(students); map<string, int>::iterator iter = students.find("杜牧"); students.erase(iter); cout << "删除杜牧后:" << endl; printMap(students); system("pause"); return 0; }
运行后,打印输出:
从上面的例子也可以看出,map中的键值对不一定是按照我们创建的顺序保存数据,map会按照key的值内部进行排序,但是保持其键值对的对应关系不变。
2.7 set(集合)
set也是一种关联性容器,它同map一样,底层使用红黑树实现,插入删除操作时仅仅移动指针即可,不涉及内存的移动和拷贝,所以效率比较高。从中文名就可以明显地看出,在set中不会存在重复的元素,若是保存相同的元素,将直接视为无效,我们先来看个简单的例子(关于set的创建和元素的添加等):
#include <iostream> #include <set> #include <vector> using namespace std; // 程序的主函数 int main() { vector<int> ivec; for (vector<int>::size_type i = 0; i != 10; i++) { ivec.push_back(i); ivec.push_back(i); } set<int> iset(ivec.begin(), ivec.end()); cout << "向量中的元素为:" << endl; for (vector<int>::iterator it = ivec.begin(); it != ivec.end(); it++) { cout << *it << " "; } cout << endl; cout << "集合中的元素为:" << endl; for (set<int>::iterator it = iset.begin(); it != iset.end(); it++) { cout << *it << " "; } cout << endl; cout << "向量的大小为:" << endl; cout << ivec.size() << endl; cout << "集合的大小为:" << endl; cout << iset.size() << endl; system("pause"); return 0; }
打印输出:
上面例子的方法,相当于直接将向量的值赋给了集合,从而顺便创建了集合,那么如果想通过逐一赋值的方式创建集合,又该如何编写代码呢?如何清除集合中的元素呢?以及是否知道某元素在集合中呢?同样我们通过一段代码来看一下。
#include <iostream> #include <set> #include <vector> #include <string> using namespace std; // 程序的主函数 int main() { set<string> set1; set1.insert("the"); //删除集合 while (!set1.empty()) { //获取头部 set<string>::iterator it = set1.begin(); //打印头部元素 cout << *it << endl; //从头部删除元素 set1.erase(set1.begin()); } set<int>set2; for (int i = 100; i < 110; i++) set2.insert(i); cout << "set2中5出现的次数为:"; cout << set2.count(5) << endl; set2.clear(); cout << "set2清除之后的大小为:"; cout << set2.size() << endl; system("pause"); return 0; }
运行,打印输出:
通过以上的例子可以发现,set可以直接通过insert()
方法添加数据,而数据内部是自动排序的,所以不用担心数据的顺序问题,当然也可以像map那样,通过迭代器添加到指定位置,查询set中有无该数据可以直接使用count()
方法,有则返回1
,无则返回0
。
3.后记
加载全部内容