亲宝软件园·资讯

展开

Python中的八大核心语句你知道几个呢?

小圆- 人气:0

前言

Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。

1. for - else

什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是合法的。十大核心语法,for-else 绝对算得上南无湾!

>> for i in [1,2,3,4]:
print(i)
else:
print(i, '我是else')

输出: 

1
2
3
4 我是else

如果在 for 和 else 之间(循环体内)有第三者 if 插足,也不会影响 for 和 else 的关系。因为 for 的级别比 if 高,else 又是一个攀附权贵的家伙,根本不在乎是否有 if,以及是否执行了满足 if 条件的语句。else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:

>>> for i in [1,2,3,4]:
if i > 2:
print(i)
else:
print(i, '我是else')

输出: 4 我是else

那么,如何拆散这对冤家呢?只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:

>>> for i in [1,2,3,4]:
if i>2:
print(i)
break
else:
print(i, '我是else')

2.lambda函数

lambda 听起来很高大上,其实就是匿名函数(了解js的同学一定很熟悉匿名函数)。匿名函数的应用场景是什么呢?就是仅在定义匿名函数的地方使用这个函数,其他地方用不到,所以就不需要给它取个阿猫阿狗之类的名字了。下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。

>>> lambda x,y: x+y
<function <lambda> at 0x000001B2DE5BD598>
>>> (lambda x,y: x+y)(3,4) 

匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。

>>> a = [{'name':'B', 'age':50}, {'name':'A', 'age':30}, {'name':'C', 'age':40}]
>>> sorted(a, key=lambda x:x['name']) # 按姓名排序
[{'name': 'A', 'age': 30}, {'name': 'B', 'age': 50}, {'name': 'C', 'age': 40}]
>>> sorted(a, key=lambda x:x['age']) # 按年龄排序
[{'name': 'A', 'age': 30}, {'name': 'C', 'age': 40}, {'name': 'B', 'age': 50}]

再举一个数组元素求平方的例子,这次用map函数:

>>> a = [1,2,3]
>>> for item in map(lambda x:x*x, a):
    print(item, end=', ')

输出:

1, 4, 9, 

3.列表推导式

在各种稀奇古怪的语法中,列表推导式的使用频率应该时最高的,对于代码的简化效果也非常明显。比如,求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):

>>> a = [1, 2, 3, 4, 5]
>>> result = list()
>>> for i in a:
    result.append(i*i)
 
>>> result
[1, 4, 9, 16, 25]

如果使用列表推导式,看起来就舒服多了:

>>> a = [1, 2, 3, 4, 5]
>>> result = [i*i for i in a]
>>> result
[1, 4, 9, 16, 25]

4.列表索引的各种骚操作

Python 引入负整数作为数组的索引,这绝对是喜大普奔之举。想想看,在C/C++中,想要数组最后一个元素,得先取得数组长度,减一之后做索引,严重影响了思维的连贯性。Python语言之所以获得成功,我个人觉得,在诸多因素里面,列表操作的便捷性是不容忽视的一点。请看:

>>> a = [0, 1, 2, 3, 4, 5]
>>> a[2:4]
[2, 3]
>>> a[3:]
[3, 4, 5]
>>> a[1:]
[1, 2, 3, 4, 5]
>>> a[:]
[0, 1, 2, 3, 4, 5]
>>> a[::2]
[0, 2, 4]
>>> a[1::2]
[1, 3, 5]
>>> a[-1]
5
>>> a[-2]
4
>>> a[1:-1]
[1, 2, 3, 4]
>>> a[::-1]
[5, 4, 3, 2, 1, 0]

如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:

>>> a = [0, 1, 2, 3, 4, 5]
>>> b = ['a', 'b']
>>> a[2:2] = b
>>> a
[0, 1, 'a', 'b', 2, 3, 4, 5]
>>> a[3:6] = b
>>> a
[0, 1, 'a', 'a', 'b', 4, 5]

5.三元表达式

熟悉 C/C++ 的程序员,初上手 python 时,一定会怀念经典的三元操作符,因为想表达同样的思想,用python 写起来似乎更麻烦。比如:

>>> y = 5
>>> if y < 0:
    print('y是一个负数')
else:
    print('y是一个非负数')
''' 
输出:
y是一个非负数
'''

其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:

打球去吧 if 不下雨 else 去自习室

来看看三元表达式具体的使用:

>>> y = 5
>>> print('y是一个负数' if y < 0 else 'y是一个非负数')

'''
输出:
y是一个非负数
'''

python 的三元表达式也可以用来赋值:

>>> y = 5
>>> x = -1 if y < 0 else 1
>>> x

6.巧用断言assert

所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。严格来讲,assert是调试手段,不宜使用在生产环境中,但这不影响我们用断言来实现一些特定功能,比如,输入参数的格式、类型验证等。

>>> def i_want_to_sleep(delay):
    assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
    print('开始睡觉')
    time.sleep(delay)
    print('睡醒了')
 
    
>>> i_want_to_sleep(1.1)
开始睡觉
睡醒了
>>> i_want_to_sleep(2)
开始睡觉
睡醒了
>>> i_want_to_sleep('2')
Traceback (most recent call last):
  File "<pyshell#247>", line 1, in <module>
    i_want_to_sleep('2')
  File "<pyshell#244>", line 2, in i_want_to_sleep
    assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
AssertionError: 函数参数必须为整数或浮点数

7.while语句

这个就很常见了,几乎是学过一点python语言的小伙伴都会知道while语句的啦,如:

我用while写了一个小的游戏

import random
 
answer = random.randint(1, 100)
counter = 0
while True:
    counter += 1
    number = int(input('请输入: '))
    if number < answer:
        print('大一点')
    elif number > answer:
        print('小一点')
    else:
        print('恭喜你猜对了!')
        break
print('你总共猜了%d次' % counter)
if counter > 7:
    print('你的智商余额明显不足')

8.with - as

with 这个词儿,英文里面不难翻译,但在 Python 语法中怎么翻译,我还真想不出来,大致上是一种上下文管理协议。作为初学者,不用关注 with 的各种方法以及机制如何,只需要了解它的应用场景就可以了。with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:

fp = open(r"D:\CSDN\Column\temp\mpmap.py", 'r')
try:
    contents = fp.readlines()
finally:
    fp.close()

如果使用 with - as,那就优雅多了:

>>> with open(r"D:\CSDN\Column\temp\mpmap.py", 'r') as fp:
    contents = fp.readlines()

加载全部内容

相关教程
猜你喜欢
用户评论