亲宝软件园·资讯

展开

微服务Spring Boot 整合 Redis 实现UV 数据统计的详细过程

Bug 终结者 人气:0

⛄引言

本文参考黑马 点评项目

在各个项目中,我们都可能需要用到UV数据统计功能,这样可以使我们更加方便、快捷的查看网站的活跃度!

一、HyperLoglog基础用法

⛅HyperLoglog 基本语法、命令

HyperLogLog

PFADD :将指定元素添加到HyperLogLogPFCOUNT:返回存储在HyperLogLog结构体的该变量的近似基数,如果该变量不存在,则返回0PFMARGE:将多个 HyperLogLog 合并(merge)为一个 HyperLogLog , 合并后的 HyperLogLog 的基数接近于所有输入 HyperLogLog 的可见集合(observed set)的并集.

详见官网: Redis 中文翻译 官方网站 HyperLogLog

在这里插入图片描述

⚡HyperLoglog 命令完成功能实现

PFADD命令

在这里插入图片描述

使用PFADD 添加数据

在这里插入图片描述

PFCOUNT 统计

在这里插入图片描述

使用PFCOUNT查询

在这里插入图片描述

PFMERGE 合并

在这里插入图片描述

合并key

在这里插入图片描述

HyperLogLog 的应用场景

二、UV统计 测试百万数据的统计

☁️什么是UV统计

通常来说 UV 会比 PV 大很多,一个网站的独立访客量 和 页面访问或点击量,肯定是独立访客大的。

UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖,那怎么处理呢?

Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。

Redis 中的HLL 是基于string数据结构实现的,单个HLL的内存永远小于16kb, 内存极低!作为代价,其测量结果是概率性的,有小于0.81%的误差。不过对于UV统计来说,这完全可以忽略。

⚡使用SpringBoot单元测试进行测试百万数据统计

首先进入Redis 查看 内存占用

info memory

在这里插入图片描述

核心源码

@Test
void testHyperLoglog() {
    String[] values = new String[1000];
    int j = 0;
    for (int i = 0; i < 1000000; i++) {
        j = i % 1000;
        values[j] = "user" + i;
        if (j == 999) {
            //发送至redis
            stringRedisTemplate.opsForHyperLogLog().add("hl2", values);
        }
    }
    //统计数量
    Long count = stringRedisTemplate.opsForHyperLogLog().size("hl2");
    System.out.println("count = " + count);
}

执行后,如下图

在这里插入图片描述

再次查看内存占比

在这里插入图片描述

可以看出占用大约为14KB,存储上百万数据只占用了14KB数据,可见HyperLogLog的强大!

⛵小结

以上就是【Bug 终结者】对 微服务Spring Boot 整合 Redis 实现 UV 数据统计 的简单介绍,UV数据统计功能是很常用的,在项目中,是一个不错的亮点,统计功能也是各大系统中比较重要的功能,签到完成后,去统计本月的连续 签到记录,来给予奖励,可大大增加用户对系统的活跃度,HyperLogLog可以与BitMap相结合,从而能够能高效的对网站进行深层次的分析! 技术改变世界!!!

加载全部内容

相关教程
猜你喜欢
用户评论