Python OpenCV识别行人入口进出人数统计
alicema1111 人气:0前言
这篇博客针对《Python OpenCV识别行人入口进出人数统计》编写代码,功能包括了入口行人识别,人数统计。代码整洁,规则,易读。应用推荐首选。
一、所需工具软件
1. Python3.6以上
2. Pycharm代码编辑器
3. OpenCV, Numpy库
二、使用步骤
1.引入库
代码如下(示例):
#导入需要的包 import numpy as np import cv2 import Person import time
2.识别特征图像
代码如下(示例):
video=cv2.VideoCapture("counting_test.avi") #输出视频 fourcc = cv2.VideoWriter_fourcc(*'XVID')#输出视频制编码 out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480)) w = video.get(3) h = video.get(4) print("视频的原宽度为:") print(int(w)) print("视频的原高度为:") area = h*w print(int(h)) areaTHreshold = area/500 print('Area Threshold', areaTHreshold) #计算画线的位置 line_up = int(1*(h/4)) line_down = int(2.7*(h/4)) up_limit = int(.5*(h/4)) down_limit = int(3.2*(h/4)) print ("Red line y:",str(line_down)) print ("Green line y:", str(line_up)) pt5 = [0, up_limit] pt6 = [w, up_limit] pts_L3 = np.array([pt5,pt6], np.int32) pts_L3 = pts_L3.reshape((-1,1,2)) pt7 = [0, down_limit] pt8 = [w, down_limit] pts_L4 = np.array([pt7,pt8], np.int32) pts_L4 = pts_L4.reshape((-1,1,2)) #背景剔除 # fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True) fgbg = cv2.createBackgroundSubtractorKNN() #用于后面形态学处理的核 kernel = np.ones((3,3),np.uint8) kerne2 = np.ones((5,5),np.uint8) kerne3 = np.ones((11,11),np.uint8) while(video.isOpened()): ret,frame=video.read() if frame is None: break #应用背景剔除 gray = cv2.GaussianBlur(frame, (31, 31), 0) #cv2.imshow('GaussianBlur', frame) #cv2.imshow('GaussianBlur', gray) fgmask = fgbg.apply(gray) fgmask2 = fgbg.apply(gray) try: #*************************************************************** #二值化 ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY) ret,imBin2 = cv2.threshold(fgmask2,200,255,cv2.THRESH_BINARY) #cv2.imshow('imBin', imBin2) #开操作(腐蚀->膨胀)消除噪声 mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kerne3) mask2 = cv2.morphologyEx(imBin2, cv2.MORPH_OPEN, kerne3) #闭操作(膨胀->腐蚀)将区域连接起来 mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kerne3) mask2 = cv2.morphologyEx(mask2, cv2.MORPH_CLOSE, kerne3) #cv2.imshow('closing_mask', mask2) #************************************************************* except: print('EOF') print ('IN:',cnt_in+count_in) print ('OUT:',cnt_in+count_in) break #找到边界 _mask2,contours0, hierarchy = cv2.findContours(mask2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours0: rect = cv2.boundingRect(cnt)#矩形边框 area=cv2.contourArea(cnt)#每个矩形框的面积 if area>areaTHreshold: #************************************************ #moments里包含了许多有用的信息 M=cv2.moments(cnt) cx=int(M['m10']/M['m00'])#计算重心 cy=int(M['m01']/M['m00']) x, y, w, h = cv2.boundingRect(cnt)#x,y为矩形框左上方点的坐标,w为宽,h为高 new=True if cy in range(up_limit,down_limit): for i in persons: if abs(cx-i.getX())<=w and abs(cy-i.getY())<=h: new=False i.updateCoords(cx,cy) if i.going_UP(line_down,line_up)==True: # cv2.circle(frame, (cx, cy), 5, line_up_color, -1) # img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_up_color, 2) if w>80: count_in=w/40 print("In:执行了/60") time.strftime("%c")) elif i.going_DOWN(line_down,line_up)==True: # cv2.circle(frame, (cx, cy), 5, (0, 0, 255), -1) # img = cv2.rectangle(frame, (x, y), (x + w, y + h), line_down_color, 2) time.strftime("%c")) break #状态为1表明 if i.getState() == '1': if i.getDir() == 'down' and i.getY() > down_limit: i.setDone() elif i.getDir() == 'up' and i.getY() < up_limit: i.setDone() if i.timedOut(): # 已经记过数且超出边界将其移出persons队列 index = persons.index(i) persons.pop(index) del i # 清楚内存中的第i个人 if new == True: p = Person.MyPerson(pid, cx, cy, max_p_age) persons.append(p) pid += 1 print("进入的总人数为:") print(cnt_in) print("出去的总人数为:") print(cnt_out) video.release(); cv2.destroyAllWindows()
3.运行结果如下:
加载全部内容