iOS内存管理Tagged Pointer使用原理详解
山海飞鸟 人气:0正文
为了节省内存和提高执行效率,苹果在64bit
程序中引入了Tagged Pointer
技术,用于优化NSNumber
、NSDate
、NSString
等小对象的存储。在引入 Tagged Pointer 技术之前,NSNumber
等对象存储在堆上,NSNumber
的指针中存储的是堆中NSNumber
对象的地址值。
从内存占用来看基本数据类型所需的内存不大。比如NSInteger
变量,它所占用的内存是与 CPU 的位数有关,如下。在 32 bit 下占用 4 个字节,而在 64 bit 下占用 8 个字节。指针类型的大小通常也是与 CPU 位数相关,一个指针所在 32 bit 下占用 4 个字节,在 64 bit 下占用 8 个字节。
#if __LP64__ || 0 || NS_BUILD_32_LIKE_64 typedef long NSInteger; typedef unsigned long NSUInteger; #else typedef int NSInteger; typedef unsigned int NSUInteger; #endif
假设我们通过NSNumber
对象存储一个NSInteger
的值,系统实际上会给我们分配多少内存呢?
由于Tagged Pointer
无法禁用,所以以下将变量i
设了一个很大的数,以让NSNumber
对象存储在堆上。
可以通过设置环境变量OBJC_DISABLE_TAGGED_POINTERS
为YES
来禁用Tagged Pointer
,但如果你这么做,运行就Crash
。
tagged pointers are disabled
因为Runtime
在程序运行时会判断Tagged Pointer
是否被禁用,如果是的话就会调用_objc_fatal()
函数杀死进程。所以,虽然苹果提供了OBJC_DISABLE_TAGGED_POINTERS
这个环境变量给我们,但是Tagged Pointer
还是无法禁用。
在 64 bit 下,如果没有使用Tagged Pointer
的话,为了使用一个NSNumber
对象就需要 8 个字节指针内存和 32 个字节对象内存。而直接使用一个NSInteger
变量只要 8 个字节内存,相差好几倍。
NSNumber
等对象的指针中存储的数据变成了Tag
+Data
形式(Tag
为特殊标记,用于区分NSNumber
、NSDate
、NSString
等对象类型;Data
为对象的值)。这样使用一个NSNumber
对象只需要 8 个字节指针内存。当指针的 8 个字节不够存储数据时,才会在将对象存储在堆上。
Tagged Pointer 的原理
在现在的版本中,为了保证数据安全,苹果对 Tagged Pointer 做了数据混淆,开发者通过打印指针无法判断它是不是一个Tagged Pointer
,更无法读取Tagged Pointer
的存储数据。
所以在分析Tagged Pointer
之前,我们需要先关闭Tagged Pointer
的数据混淆,以方便我们调试程序。通过设置环境变量OBJC_DISABLE_TAG_OBFUSCATION
为YES
。
MacOS 分析
int main(int argc, const char * argv[]) { @autoreleasepool { NSNumber *number1 = @1; NSNumber *number2 = @2; NSNumber *number3 = @3; NSNumber *number4 = @(0xFFFFFFFFFFFFFFFF); NSLog(@"%p %p %p %p", number1, number2, number3, number4); } return 0; } // 关闭 Tagged Pointer 数据混淆后:0x127 0x227 0x327 0x600003a090e0 // 关闭 Tagged Pointer 数据混淆前:0xaca2838a63a4fb34 0xaca2838a63a4fb04 0xaca2838a63a4fb14 0x600003a090e0
从以上打印结果可以看出,number1~number3
指针为Tagged Pointer
类型,可以看到对象的值都存储在了指针中,对应0x1
、0x2
、0x3
。而number4
由于数据过大,指针的8
个字节不够存储,所以在堆中分配了内存。
注意: MacOS
与iOS
平台下的Tagged Pointer
有差别,下面会讲到。
0x127 中的 2 和 7 表示什么?我们先来看这个7
,0x127
为十六进制表示,7
的二进制为0111
。
最后一位1
是Tagged Pointer
标识位,代表这个指针是Tagged Pointer
。
前面的011
是类标识位,对应十进制为3
,表示NSNumber
类。
备注: MacOS
下采用 LSB(Least Significant Bit,即最低有效位)为Tagged Pointer
标识位,而iOS
下则采用 MSB(Most Significant Bit,即最高有效位)为Tagged Pointer
标识位。
可以在Runtime
源码objc4
中查看NSNumber
、NSDate
、NSString
等类的标识位。
// objc-internal.h { OBJC_TAG_NSAtom = 0, OBJC_TAG_1 = 1, OBJC_TAG_NSString = 2, OBJC_TAG_NSNumber = 3, OBJC_TAG_NSIndexPath = 4, OBJC_TAG_NSManagedObjectID = 5, OBJC_TAG_NSDate = 6, ...... }
0x127 中的 2(即倒数第二位)又代表什么呢?
倒数第二位用来表示数据类型。
示例:
int main(int argc, const char * argv[]) { @autoreleasepool { char a = 1; short b = 1; int c = 1; long d = 1; float e = 1.0; double f = 1.00; NSNumber *number1 = @(a); NSNumber *number2 = @(b); NSNumber *number3 = @(c); NSNumber *number4 = @(d); NSNumber *number5 = @(e); NSNumber *number6 = @(f); NSLog(@"%p %p %p %p %p %p", number1, number2, number3, number4, number5, number6); } return 0; } // 0x107 0x117 0x127 0x137 0x147 0x157
Tagged Pointer
倒数第二位对应数据类型:
Tagged Pointer 倒数第二位 | 对应数据类型 |
---|---|
0 | char |
1 | short |
2 | int |
3 | long |
4 | float |
5 | double |
下图是MacOS
下NSNumber
的Tagged Pointer
位视图:
接下来我们来分析一下Tagged Pointer
在NSString
中的应用。同NSNumber
一样,在64 bit
的MacOS
下,如果一个NSString
对象指针为Tagged Pointer
,那么它的后 4 位(0-3)作为标识位,第 4-7 位表示字符串长度,剩余的 56 位就可以用来存储字符串。
示例:
// MRC 环境 #define HTLog(_var) \ { \ NSString *name = @#_var; \ NSLog(@"%@: %p, %@, %lu", name, _var, [_var class], [_var retainCount]); \ } int main(int argc, const char * argv[]) { @autoreleasepool { NSString *a = @"a"; NSMutableString *b = [a mutableCopy]; NSString *c = [a copy]; NSString *d = [[a mutableCopy] copy]; NSString *e = [NSString stringWithString:a]; NSString *f = [NSString stringWithFormat:@"f"]; NSString *string1 = [NSString stringWithFormat:@"abcdefg"]; NSString *string2 = [NSString stringWithFormat:@"abcdefghi"]; NSString *string3 = [NSString stringWithFormat:@"abcdefghij"]; HTLog(a); HTLog(b); HTLog(c); HTLog(d); HTLog(e); HTLog(f); HTLog(string1); HTLog(string2); HTLog(string3); } return 0; } /* a: 0x100002038, __NSCFConstantString, 18446744073709551615 b: 0x10071f3c0, __NSCFString, 1 c: 0x100002038, __NSCFConstantString, 18446744073709551615 d: 0x6115, NSTaggedPointerString, 18446744073709551615 e: 0x100002038, __NSCFConstantString, 18446744073709551615 f: 0x6615, NSTaggedPointerString, 18446744073709551615 string1: 0x6766656463626175, NSTaggedPointerString, 18446744073709551615 string2: 0x880e28045a54195, NSTaggedPointerString, 18446744073709551615 string3: 0x10071f6d0, __NSCFString, 1 */
从打印结果来看,有三种NSString
类型:
类型 | 描述 |
---|---|
__NSCFConstantString | 1. 常量字符串,存储在字符串常量区,继承于 __NSCFString。相同内容的 __NSCFConstantString 对象的地址相同,也就是说常量字符串对象是一种单例,可以通过 == 判断字符串内容是否相同。 2. 这种对象一般通过字面值@"..." 创建。如果使用 __NSCFConstantString 来初始化一个字符串,那么这个字符串也是相同的 __NSCFConstantString。 |
__NSCFString | 1. 存储在堆区,需要维护其引用计数,继承于 NSMutableString。 2. 通过stringWithFormat: 等方法创建的NSString 对象(且字符串值过大无法使用Tagged Pointer 存储)一般都是这种类型。 |
NSTaggedPointerString | Tagged Pointer ,字符串的值直接存储在了指针上。 |
打印结果分析:
NSString 对象 | 类型 | 分析 |
---|---|---|
a | __NSCFConstantString | 通过字面量@"..." 创建 |
b | __NSCFString | a 的深拷贝,指向不同的内存地址,被拷贝到堆区 |
c | __NSCFConstantString | a 的浅拷贝,指向同一块内存地址 |
d | NSTaggedPointerString | 单独对 a 进行 copy(如 c),浅拷贝是指向同一块内存地址,所以不会产生Tagged Pointer ;单独对 a 进行 mutableCopy(如 b),复制出来是可变对象,内容大小可以扩展;而Tagged Pointer 存储的内容大小有限,因此无法满足可变对象的存储要求。 |
e | __NSCFConstantString | 使用 __NSCFConstantString 来初始化的字符串 |
f | NSTaggedPointerString | 通过stringWithFormat: 方法创建,指针足够存储字符串的值。 |
string1 | NSTaggedPointerString | 通过stringWithFormat: 方法创建,指针足够存储字符串的值。 |
string2 | NSTaggedPointerString | 通过stringWithFormat: 方法创建,指针足够存储字符串的值。 |
string3 | __NSCFString | 通过stringWithFormat: 方法创建,指针不足够存储字符串的值。 |
可以看到,为Tagged Pointer
的有d
、f
、string1
、string2
指针。它们的指针值分别为0x6115
、0x6615
、0x6766656463626175
、0x880e28045a54195
。
其中0x61
、0x66
、0x67666564636261
分别对应字符串的 ASCII 码。
最后一位5
的二进制为0101
,最后一位1
是代表这个指针是Tagged Pointer
,010
对应十进制为2
,表示NSString
类。
倒数第二位1
、1
、7
、9
代表字符串长度。
对于string2
的指针值0x880e28045a54195
,虽然从指针中看不出来字符串的值,但其也是一个Tagged Pointer
。
下图是MacOS
下NSString
的Tagged Pointer
位视图:
如何判断 Tagged Pointer
在objc4
源码中找到判断Tagged Pointer
的函数:
// objc-internal.h static inline bool _objc_isTaggedPointer(const void * _Nullable ptr) { return ((uintptr_t)ptr & _OBJC_TAG_MASK) == _OBJC_TAG_MASK; }
可以看到,它是将指针值与一个_OBJC_TAG_MASK
掩码进行按位与运算,查看该掩码:
#if (TARGET_OS_OSX || TARGET_OS_IOSMAC) && __x86_64__ // 64-bit Mac - tag bit is LSB # define OBJC_MSB_TAGGED_POINTERS 0 // MacOS #else // Everything else - tag bit is MSB # define OBJC_MSB_TAGGED_POINTERS 1 // iOS #endif #define _OBJC_TAG_INDEX_MASK 0x7 // array slot includes the tag bit itself #define _OBJC_TAG_SLOT_COUNT 16 #define _OBJC_TAG_SLOT_MASK 0xf #define _OBJC_TAG_EXT_INDEX_MASK 0xff // array slot has no extra bits #define _OBJC_TAG_EXT_SLOT_COUNT 256 #define _OBJC_TAG_EXT_SLOT_MASK 0xff #if OBJC_MSB_TAGGED_POINTERS # define _OBJC_TAG_MASK (1UL<<63) // _OBJC_TAG_MASK # define _OBJC_TAG_INDEX_SHIFT 60 # define _OBJC_TAG_SLOT_SHIFT 60 # define _OBJC_TAG_PAYLOAD_LSHIFT 4 # define _OBJC_TAG_PAYLOAD_RSHIFT 4 # define _OBJC_TAG_EXT_MASK (0xfUL<<60) # define _OBJC_TAG_EXT_INDEX_SHIFT 52 # define _OBJC_TAG_EXT_SLOT_SHIFT 52 # define _OBJC_TAG_EXT_PAYLOAD_LSHIFT 12 # define _OBJC_TAG_EXT_PAYLOAD_RSHIFT 12 #else # define _OBJC_TAG_MASK 1UL // _OBJC_TAG_MASK # define _OBJC_TAG_INDEX_SHIFT 1 # define _OBJC_TAG_SLOT_SHIFT 0 # define _OBJC_TAG_PAYLOAD_LSHIFT 0 # define _OBJC_TAG_PAYLOAD_RSHIFT 4 # define _OBJC_TAG_EXT_MASK 0xfUL # define _OBJC_TAG_EXT_INDEX_SHIFT 4 # define _OBJC_TAG_EXT_SLOT_SHIFT 4 # define _OBJC_TAG_EXT_PAYLOAD_LSHIFT 0 # define _OBJC_TAG_EXT_PAYLOAD_RSHIFT 12 #endif
由此我们可以验证:
MacOS
下采用 LSB(Least Significant Bit,即最低有效位)为Tagged Pointer
标识位;iOS
下则采用 MSB(Most Significant Bit,即最高有效位)为Tagged Pointer
标识位。
而存储在堆空间的对象由于内存对齐,它的内存地址的最低有效位为 0。由此可以辨别Tagged Pointer
和一般对象指针。
在objc4
源码中,我们经常会在函数中看到Tagged Pointer
。比如objc_msgSend
函数:
ENTRY _objc_msgSend UNWIND _objc_msgSend, NoFrame cmp p0, #0 // nil check and tagged pointer check #if SUPPORT_TAGGED_POINTERS b.le LNilOrTagged // (MSB tagged pointer looks negative) #else b.eq LReturnZero #endif ldr p13, [x0] // p13 = isa GetClassFromIsa_p16 p13 // p16 = class LGetIsaDone: // calls imp or objc_msgSend_uncached CacheLookup NORMAL, _objc_msgSend #if SUPPORT_TAGGED_POINTERS LNilOrTagged: b.eq LReturnZero // nil check // tagged adrp x10, _objc_debug_taggedpointer_classes@PAGE add x10, x10, _objc_debug_taggedpointer_classes@PAGEOFF ubfx x11, x0, #60, #4 ldr x16, [x10, x11, LSL #3] adrp x10, _OBJC_CLASS_$___NSUnrecognizedTaggedPointer@PAGE add x10, x10, _OBJC_CLASS_$___NSUnrecognizedTaggedPointer@PAGEOFF cmp x10, x16 b.ne LGetIsaDone // ext tagged adrp x10, _objc_debug_taggedpointer_ext_classes@PAGE add x10, x10, _objc_debug_taggedpointer_ext_classes@PAGEOFF ubfx x11, x0, #52, #8 ldr x16, [x10, x11, LSL #3] b LGetIsaDone // SUPPORT_TAGGED_POINTERS #endif
objc_msgSend
能识别Tagged Pointer
,比如NSNumber
的intValue
方法,直接从指针提取数据,不会进行objc_msgSend
的三大流程,节省了调用开销。
内存管理相关的,如retain
方法中调用的rootRetain
:
ALWAYS_INLINE id objc_object::rootRetain(bool tryRetain, bool handleOverflow) { // 如果是 tagged pointer,直接返回 this if (isTaggedPointer()) return (id)this; bool sideTableLocked = false; bool transcribeToSideTable = false; isa_t oldisa; isa_t newisa; ......
Tagged Pointer 注意点
我们知道,所有OC
对象都有isa
指针,而Tagged Pointer
并不是真正的对象,它没有isa
指针,所以如果你直接访问Tagged Pointer
的isa
成员的话,在编译时将会有如下警告:
对于Tagged Pointer
,应该换成相应的方法调用,如isKindOfClass
和object_getClass
。只要避免在代码中直接访问Tagged Pointer
的isa
,即可避免这个问题。
当然现在也不允许我们在代码中直接访问对象的isa
了,否则编译不通过。
我们通过 LLDB 打印Tagged Pointer
的isa
,会提示如下错误:
加载全部内容