亲宝软件园·资讯

展开

Python去除图片水印实现方法详解

宋宋讲编程 人气:0

最近写文章遇到图片有水印,如何去除水印呢?

网上找了各种办法,也跑到小红书、抖音等平台找有没有不收费就去水印的网站,但是基本上都是需要VIP会员才可以。

话又说回来这种事情怎么能难倒一个程序员呢?Python的库有这么多肯定有一款适合我吧?

于是找来了OpenCV。

OpenCV介绍

文档链接:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html

Opencv(Open Source Computer Vision Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。

在这里我们要区分两个概念:

OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS, 如今也提供对于C#、Ch、Ruby,GO的支持

OpenCV应用领域有:人机互动、物体识别、 图像分割、人脸识别、动作识别、运动跟踪、机器人、运动分析、机器视觉、结构分析、汽车安全驾驶等。

安装:

安装numpy:pip install numpy

安装opencv-python:pip install opencv-python

安装opencv-contrib-python**:pip install opencv-contrib-python

如果安装过程中有误,可以去下载安装whl:http://www.lfd.uci.edu/~gohlke/pythonlibs/,找到对应的版本下载。

在命令行安装成功后,进入开发环境导入cv2,如果未报错,就证明opencv安装成功。

去水印

图片展示

记得学过PS中有蒙版,可以使用蒙版遮罩完成。

代码:

python
# 方式一
import cv2
# 黑底白字
src = cv2.imread("images/a1.png")  # 默认的彩色图(IMREAD_COLOR)方式读入原始图像
# black.jpg
mask = cv2.imread('images/a2.png', cv2.IMREAD_GRAYSCALE)  # 灰度图(IMREAD_GRAYSCALE)方式读入水印蒙版图像
# 参数:目标修复图像; 蒙版图(定位修复区域); 选取邻域半径; 修复算法(包括INPAINT_TELEA/INPAINT_NS, 前者算法效果较好)
dst = cv2.inpaint(src, mask, 3, cv2.INPAINT_NS)
cv2.imwrite('result.jpg', dst)

但是这种方法使用的时候要求两张图片的大小必须是一样的,否则会一直报错

Traceback (most recent call last):
  File "/Users/running/PycharmProjects/untitled8/test1.py", line 16, in <module>
    get_water()
  File "/Users/running/PycharmProjects/untitled8/test1.py", line 11, in get_water
    dst = cv2.inpaint(src, mask, 3, cv2.INPAINT_NS)
cv2.error: OpenCV(4.1.2) /Users/travis/build/skvark/opencv-python/opencv/modules/photo/src/inpaint.cpp:748: error: (-209:Sizes of input arguments do not match) All the input and output images must have the same size in function 'icvInpaint'
 

可以分别打印一下尺寸看看,发现确实不一样

import cv2
from PIL import Image
# 黑底白字
src = cv2.imread("images/a1.png")  # 默认的彩色图(IMREAD_COLOR)方式读入原始图像
# black.jpg
mask = cv2.imread('images/a2.png', cv2.IMREAD_GRAYSCALE)  # 灰度图(IMREAD_GRAYSCALE)方式读入水印蒙版图像
# 参数:目标修复图像; 蒙版图(定位修复区域); 选取邻域半径; 修复算法(包括INPAINT_TELEA/INPAINT_NS, 前者算法效果较好)
print(src.shape, mask.shape)
dst = cv2.inpaint(src, mask, 3, cv2.INPAINT_NS)
cv2.imwrite('result1.jpg', dst)

(1454, 2182, 3) (1456, 2184)

于是要设置成一样的大小

import cv2
from PIL import Image
src = cv2.imread("images/a1.png")  # 默认的彩色图(IMREAD_COLOR)方式读入原始图像
# black.jpg
mask = cv2.imread('images/a2.png', cv2.IMREAD_GRAYSCALE)  # 灰度图(IMREAD_GRAYSCALE)方式读入水印蒙版图像
# 参数:目标修复图像; 蒙版图(定位修复区域); 选取邻域半径; 修复算法(包括INPAINT_TELEA/INPAINT_NS, 前者算法效果较好)
out2 = cv2.resize(mask,(2182,1454))
out1 = cv2.resize(src,(2182,1454))
print(out1.shape, out2.shape)
dst = cv2.inpaint(out1, out2, 3, cv2.INPAINT_NS)
#
cv2.imwrite('result.jpg', dst)

结果:

这种方式似乎还是可以看到一些水印,我们可以采用下面一种方法。

图片去水印原理

1、标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([200, 200, 240]), np.array([255, 255, 255])),把[200, 200, 200]~[255, 255, 255]以外的颜色处理为0;

2、使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果;

3、使用inpaint方法,把噪声的mask作为参数,推理并修复图片。

实现思路

1、从原图片,截取右下角部分,另存为新图片;

2、识别水印,颜色值为:[200, 200, 200]~[255, 255, 255]

3、去掉水印,还原图片;

4、把原图片、去掉水印的新图片,进行重叠合并;

代码

import cv2
import numpy as np
from PIL import Image
import os
dir = os.getcwd()
path = "a1.jpg"
newPath = "new.jpg"
img = cv2.imread(path, 1)
hight, width, depth = img.shape[0:3]
# 截取
cropped = img[int(hight * 0.8):hight, int(width * 0.7):width]  # 裁剪坐标为[y0:y1, x0:x1]
cv2.imwrite(newPath, cropped)
imgSY = cv2.imread(newPath, 1)
# 图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0
thresh = cv2.inRange(imgSY, np.array([200, 200, 200]), np.array([250, 250, 250]))
# 创建形状和尺寸的结构元素
kernel = np.ones((3, 3), np.uint8)
# 扩展待修复区域
hi_mask = cv2.dilate(thresh, kernel, iterations=10)
specular = cv2.inpaint(imgSY, hi_mask, 5, flags=cv2.INPAINT_TELEA)
cv2.imwrite(newPath, specular)
# 覆盖图片
imgSY = Image.open(newPath)
img = Image.open(path)
img.paste(imgSY, (int(width * 0.7), int(hight * 0.8), width, hight))
img.save(newPath)

输出结果:

加载全部内容

相关教程
猜你喜欢
用户评论