Java图论进阶之最小生成树算法详解
Node_Hao 人气:01. 最小生成树
连通图中的每一棵生成树 , 都是原图的极大无环子图 , 即: 从中删去任何一条边 , 生成树就不再连通;反之 , 在其中引入任何一条新边 , 都会形成一条回路.
若连通图由n个顶点组成 , 则其生成树必含n个顶点和n-1条边 , 因此构造最小生成树有三个准则:
- 1.只能使用图中的边来构造最小生成树
- 2.只能使用恰好n-1条边来连接图中的n个顶点
- 3.选用的n-1条边不能构成回路
常见求解最小生成树的算法有: Kruskal算法和Prime算法.两种算法都采用逐步求解的贪心策略.
贪心算法: 通过局部最优解来推出全局最优解.
1.1 Kruskal(克鲁斯卡尔) 算法
给定一个有n个顶点的连通网络N={V,E}
首先构造一个由这n个顶点组成 , 不含任何边的图G={V,NULL}.
其次不断从E中取出权值最小的一条边(若有多条任选其一) , 若该边的两个顶点来自不同的连通分量 , 则将此边加入到G中.
如此反复 , 直到G中边数达到顶点数-1为止.
核心: 每次迭代时 , 选出权值最小且两端点不在同一连通分量上的边 , 加入生成树.
步骤分析:
1.由于该算法的思想是全局贪心 , 因此将所有图中所有边全部放入优先级队列中.
2.构造一个最小生成树 , 将优先级队列中的边依次加入.
3.为了防止出现环 , 使用并查集判断每次取出的边的顶点是否来自同一个集合 .
4.如果不是同一集合 , 将该边加入最小生成树并用并查集将该边的领接顶点放入同一个 集合.
代码示例:
/** * 克鲁斯卡尔算法实现 * @param minTree * @return */ /** * 模拟实现一条边 */ static class Edge{ public int srcIndex; public int destIndex; public int weight; public Edge(int srcIndex, int destIndex, int weight) { this.srcIndex = srcIndex; this.destIndex = destIndex; this.weight = weight; } } public int kruskal(GraphOfMatrix minTree) { //1.定义一个优先级队列 PriorityQueue<Edge> minQ = new PriorityQueue<Edge>(new Comparator<Edge>() { @Override public int compare(Edge o1, Edge o2) { return o1.weight - o2.weight; } }); int n = arrayV.length; //2.遍历领接矩阵,将所有的边都放入优先级队列中 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i < j && Matrix[i][j] != Integer.MIN_VALUE) { minQ.offer(new Edge(i, j, Matrix[i][j])); } } } //3.构造并查集将符合要求的边加入到最小生成树中 UnionFindSet ufs = new UnionFindSet(n); int size = 0;//记录最小生成树中边的数量 int totalWeight = 0;//记录权值 while (size < n - 1 && !minQ.isEmpty()) { Edge edge = minQ.poll(); int srcIndex = edge.srcIndex; int destIndex = edge.destIndex; //同一边的相邻顶点不能来自同一集合 if (!ufs.isSameUnionFindSet(srcIndex, destIndex)) { //将符合条件的边加入到最小生成树中 minTree.addEdgeUseIndex(srcIndex, destIndex, Matrix[srcIndex][destIndex]); System.out.println("选择的边"+arrayV[srcIndex]+" -> "+arrayV[destIndex]+Matrix[srcIndex][destIndex]); size++; totalWeight += Matrix[srcIndex][destIndex]; //将添加过的边的相邻顶点放入同一集合,防止出现环. ufs.union(srcIndex, destIndex); } } if (size == n - 1) { return totalWeight; } else { throw new RuntimeException("没有最小生成树"); } } //按照下标将边加入到最小生成树中 public void addEdgeUseIndex(int srcIndex,int destIndex,int weight){ Matrix[srcIndex][destIndex] = weight; //如果是无向图邻接矩阵对称位置也要添加 if (!isDirect){ Matrix[destIndex][srcIndex] = weight; } } //测试克鲁斯卡尔算法 public static void main(String[] args) { String str = "abcdefghi"; char[] array =str.toCharArray(); graph.GraphOfMatrix g = new graph.GraphOfMatrix(str.length(),false); g.initArray(array); g.addEdge('a', 'b', 4); g.addEdge('a', 'h', 8); //g.addEdge('a', 'h', 9); g.addEdge('b', 'c', 8); g.addEdge('b', 'h', 11); g.addEdge('c', 'i', 2); g.addEdge('c', 'f', 4); g.addEdge('c', 'd', 7); g.addEdge('d', 'f', 14); g.addEdge('d', 'e', 9); g.addEdge('e', 'f', 10); g.addEdge('f', 'g', 2); g.addEdge('g', 'h', 1); g.addEdge('g', 'i', 6); g.addEdge('h', 'i', 7); graph.GraphOfMatrix kminTree = new graph.GraphOfMatrix(str.length(),false); System.out.println(g.kruskal(kminTree)); kminTree.printGraph(); }
构造并查集:
public class UnionFindSet { public int[] elem; public UnionFindSet(int n){ this.elem = new int[n]; Arrays.fill(elem,-1); } /** * 查找数据x的根节点 * @param x * @return */ public int findRoot(int x){ if (x < 0){ throw new RuntimeException("下表不合法"); } while (elem[x] >= 0){ x = elem[x]; } return x; } /** * 查询x1和x2是不是同一个集合 * @param x1 * @param x2 * @return */ public boolean isSameUnionFindSet(int x1 , int x2){ int index1 = findRoot(x1); int index2 = findRoot(x2); if (index1 == index2){ return true; } return false; } /** * 这是合并操作 * @param x1 * @param x2 */ public void union(int x1 , int x2){ int index1 = findRoot(x1); int index2 = findRoot(x2); if (index1 == index2) return; elem[index1] = elem[index1] + elem[index2]; elem[index2] = index1; } /** * 有几对关系 * @return */ public int getCount(){ int count = 0; for (int x:elem) { if (x < 0){ count++; } } return count; } public void Print(){ for (int x:elem){ System.out.print(x+" "); } System.out.println(); } }
测试结果:
1.2 Prime(普里姆) 算法
普里姆算法与克鲁斯卡尔算法类似 , 核心区别是普里姆算法采用局部贪心的思想.
首先 , 设定两个集合 , X{}已确定顶点的集合 , Y{}未确定顶点的集合.
其次 , 假设图中的顶点为 a,b,c,d,e,f,g,h,i.放入Y{}中.
然后 , 任取一个顶点放入X{}中 . 在Y{}中选择一个与该顶点相连权值最小的边 , 加入最小生成树中.
如此重复 , 直到最小生成树的边数达到顶点数-1为止.
代码示例:
/** * 普里姆算法实现 * @param minTree * @param chV 图中顶点的起点 * @return */ public int prime(GraphOfMatrix minTree,char chV) { int srcIndex = getIndexOfV(chV); //存储已确定的顶点 Set<Integer> setX = new HashSet<>(); setX.add(srcIndex); //初始化未确定的点 Set<Integer> setY = new HashSet<>(); int n = arrayV.length; for (int i = 0; i < n; i++) { if (i != srcIndex){ setY.add(i); } } //定义一个优先级队列 PriorityQueue<Edge> minQ = new PriorityQueue<>(new Comparator<Edge>() { @Override public int compare(Edge o1, Edge o2) { return o1.weight - o2.weight; } }); //遍历srcIndex连接出去的边,并放入优先级队列中排序 for (int i = 0; i < n; i++) { if (Matrix[srcIndex][i] != Integer.MIN_VALUE){ minQ.offer(new Edge(srcIndex,i,Matrix[srcIndex][i])); } } int size = 0; int totalWeight = 0; while (!minQ.isEmpty()){ Edge min = minQ.poll(); int srcI = min.srcIndex; int destI = min.destIndex; if (setX.contains(destI)){ //此时会构成环 }else { minTree.addEdgeUseIndex(srcI,destI,Matrix[srcI][destI]); System.out.println("起点"+arrayV[srcI]+" -> "+"终点"+arrayV[destI]+Matrix[srcI][destI]); size++; totalWeight+=min.weight; if (size == n-1){ return totalWeight; } //更新两个集合 setX.add(destI); setY.remove(destI); //把dest连出去的所有边也放到优先级队列中 for (int i = 0; i < n; i++) { if (Matrix[destI][i] != Integer.MIN_VALUE && !setX.contains(i)){ minQ.offer(new Edge(destI,i,Matrix[destI][i])); } } } } throw new RuntimeException("没有最小生成树"); } //测试普里姆算法 public static void main3(String[] args) { String str = "abcdefghi"; char[] array =str.toCharArray(); GraphOfMatrix g = new GraphOfMatrix(str.length(),false); g.initArray(array); g.addEdge('a', 'b', 4); g.addEdge('a', 'h', 8); //g.addEdge('a', 'h', 9); g.addEdge('b', 'c', 8); g.addEdge('b', 'h', 11); g.addEdge('c', 'i', 2); g.addEdge('c', 'f', 4); g.addEdge('c', 'd', 7); g.addEdge('d', 'f', 14); g.addEdge('d', 'e', 9); g.addEdge('e', 'f', 10); g.addEdge('f', 'g', 2); g.addEdge('g', 'h', 1); g.addEdge('g', 'i', 6); g.addEdge('h', 'i', 7); GraphOfMatrix primTree = new GraphOfMatrix(str.length(),false); System.out.println(g.prime(primTree,'a')); primTree.printGraph(); }
总结
加载全部内容