亲宝软件园·资讯

展开

C++泛型编程综合讲解

编程远泊 人气:0

函数模板

进一步把函数中的或类中的数据类型进一步抽象,这个抽象的类型就叫泛型

模板:函数模板,类模板

模板就是把函数(或类)中的类型抽象出来,有指定类型方可使用

模板可以有默认类型,类模板规则(函数模板,不存在规则):从右到左

模板编译机制:

注意:模板函数需要编译两次,是慢于定义函数的原因

关键字template是模板标识符

<>是泛型,指定的参数类型列表

class用来修饰泛型,typename也可进行修饰

#include <iostream>
using namespace std;
//int add(int a,int b){
//    return a+b;
//}
//float add(float a,float b){
//    return a+b;
//}
//string add(string a,string b){
//    return a+b;
//}
//抽象的泛型
template<class T>
T add(T a,T b){
    cout << "i am is template" << endl;
    return a+b;
}
int main()
{
    int a=10,b=20;
    cout << add(a,b) << endl;
    float a1=5.21;
    float b1=13.14;
    cout << add(a1,b1) << endl;
    string a2="yao",b2="liang";
    cout << add(a2,b2) << endl;//隐式调用
    cout << add<string>(a2,b2) << endl;//显示调用
    return 0;
}

显示调用和隐式调用

#include <iostream>
using namespace std;
//抽象的泛型
typename<class T>
T add(T a,T b){
    return a+b;
}
int main()
{
    string a2="yao",b2="liang";
    cout << add(a2,b2) << endl;//隐式调用
    cout << add<string>(a2,b2) << endl;//显示调用
    return 0;
}

函数模板的特化

前提:模板的特化(泛型没有制定类型)是依赖基础模板的

产生原因:当函数的算法逻辑与实际的参数类型不匹配时,就应该对类型进行特化

#include <iostream>
using namespace std;
template  <class T>
T compair(T t1,T t2){
    return t1>t2?t1:t2;
}
//对基础模板进行全特化(函数模板只能全特化,不能偏特化)
template <>
const char* compair(const char* str1,const char* str2){
    return string(str1)>string(str2)?str1:str2;
}
int main()
{
    int a=10,b=20;
    cout << compair(a,b) << endl;
    const char* str1="yaoliang";
    const char* str2="yao";
    cout << compair(str1,str2) << endl;
    return 0;
}

类型可以传*号

#include <iostream>
using namespace std;
template  <class T>
T compair(T t1,T t2){//char *t1=name; 
    cout << string(t1) << endl;
}
int main()
{
    char *name="minmin";
    char *name1="sun";
    compair(name,name1);
//    int a=10;
//    int *p=&a;
//    int *q=&a;
//    compair(p,q);
    return 0;
}

函数模板的调用优先级

函数实例>匹配的特化模板>基础模板

#include <iostream>
using namespace std;
template  <class T>
T compair(T t1,T t2){
    cout << "i am is basics" <<endl;
    return t1>t2?t1:t2;
}
//对基础模板进行全特化(函数模板只能全特化,不能偏特化)
template <>
const char* compair(const char* str1,const char* str2){
    cout << "i am is specialization" <<endl;
    return string(str1)>string(str2)?str1:str2;
}
inline int compair(int a,int b){
    cout << "i am is inline fun" << endl;
    return a>b?a:b;
}
int main()
{
    int a=10,b=20;
    cout << compair(a,b) << endl;
    const char* str1="yaoliang";
    const char* str2="yao";
    //如果是隐式调用,优先调用与之类型相匹配的特化模板
    cout << compair(str1,str2) << endl;
    //显性调用,直接调用
    cout << compair<const char*>(str1,str2) << endl;
    cout << compair<int>(a,b) << endl;
    return 0;
}

函数模板的实参推演

函数模板具有函数特性:函数重载

#include <iostream>
using namespace std;
template  <class T>
T add(T t1,T t2){
    cout << "i am is one_basics" <<endl;
    return t1+t2;
}
template  <class T1,class T2>
T1 add(T1 t1,T2 t2){
    cout << "i am is two_basics" <<endl;
    return t1+t2;
}
int main()
{
    int a=10,b=20;
    cout << add(a,b) << endl;
    double c=13.14;
    cout << add(c,a) << endl;
    return 0;
}

函数泛型不仅是一个单一抽象类型,也可以是一个组合类型。

#include <iostream>
#include <typeinfo>//信息识别头
using namespace std;
template <class T>
void my_funtion(T t){
    cout << "i am is basics" << endl;
    cout << typeid (t).name() << endl;
}
template <>
void my_funtion(int* t){
    cout << "指针类型的特化" << endl;
    cout << typeid (t).name() << endl;
}
template <class Ret,class Arg1,class Arg2>
void my_funtion(Ret (*arg)(Arg1,Arg2)){
    cout << typeid (Ret).name() << endl;
    cout << typeid (Arg1).name() << endl;
    cout << typeid (Arg2).name() << endl;
    cout << "指针类型的复合模板" << endl;
}
int add(int a,int b){
    return  a+b;
}
int main()
{
    int a=10;
    my_funtion(a);
    int *p=&a;
    my_funtion(p);
    my_funtion(add);
    return 0;
}

在c++11关于函数模板的可变参符号…

…如果修饰类型(变量),则表示类型(变量)不定引数,个数不同,类型不同的多个参数。

#include <iostream>
using namespace std;
//函数实例
void print(){
};
template <class FirstArg,class... Args>
void print(FirstArg firstArg,Args... args){//int firstArg=100,...(3.14,"yaoliang")
    									//3.14 ...("yaoliang")
    									//"yaoliang" ...()
    cout << firstArg << " ";
    print(args...);
}
int main()
{
   print(100,3.14,"yaoliang");
   return 0;
}

类模板

像声明一个类一样声明一个模板,无隐式调用,模板规则:使用默认泛型参数类型,从右向左依次指定

#include <iostream>
using namespace std;
template <class T1,class T2>
class Person{
private:
    T1 _name;
    T2 _age;
public:
    Person(T1 name,T2 age){
        this->_age=age;
        this->_name=name;
    }
    int getAge(){
        return this->_age;
    }
    string getName(){
        return  this->_name;
    }
    virtual void showInfo(){
        cout << "姓名:" << this->_name << ",年龄:" << this->_age << endl;
    }
};
template <class T1,class T2,class T3=int>
class Stu:public Person<T1,T2>
{
private:
    const T3 _id;
    static int count;
public:
    Stu(T1 name,T2 age,T3 id):Person<T1,T2>(name,age),_id(id){
        count++;
    }
    void showInfo()override{
        cout << "学号:" << this->_id << ",姓名:" << this->getName() << ",年龄:" << this->getAge() << endl;
    }
    static int get_count(){
        return count;
    }
};
template <class T1,class T2,class T3>
int Stu<T1,T2,T3>::count=0;
int main()
{
    Person<string,int> *person=new Stu<string,int,int>("yao",19,1);
    person->showInfo();
    delete person;
    Stu<string,int> stu("sunsun",18,2);//使用缺省类型,从右往左
    stu.showInfo();
    cout << Stu<string,int,int>::get_count() << endl;
    return 0;
}

分文件编程实现一个顺序栈

注意: .hpp是类模板文件,声明和定义在同一个文件中

stack_cpp.hpp:

#ifndef MY_STACK_HPP
#define MY_STACK_HPP    
#include <exception>
#include <stdexcept>
#include <iostream>
using namespace std;
template <class T>
class my_stack{
private:
    T* m_data;
    int capacity;
    int size;
public:
    my_stack(int c=10);
    ~my_stack();
    bool full();
    bool empty();
    void push(const T& val);
    void pop();
    T& top();
};
#endif // MY_STACK_HPP
template<class T>
my_stack<T>::my_stack(int c)
{
    this->capacity=c;
    this->m_data=new T[capacity];
    this->size=0;
}
template<class T>
my_stack<T>::~my_stack()
{
    if(nullptr!=this->m_data){
        delete [] this->m_data;
        this->m_data=nullptr;
    }
    capacity=size=0;
}
template<class T>
bool my_stack<T>::full()
{
    return size==capacity;
}
template<class T>
bool my_stack<T>::empty()
{
    return size==0;
}
template<class T>
void my_stack<T>::push(const T &val)
{
    if(full()){
        return;
    }
    m_data[size]=val;
    size++;
}
template<class T>
void my_stack<T>::pop()
{
    if(this->empty()){
        throw range_error("空了");
    }
    size--;
}
template<class T>
T &my_stack<T>::top()
{
    return m_data[size-1];
}

main.cpp:

#include <iostream>
#include "my_stack.hpp"
using namespace std;
int main()
{
    my_stack<int> s;
    s.push(1);
    s.push(2);
    s.push(3);
    while (!s.empty()) {
        cout << s.top() << endl;
        s.pop();
    }
    return 0;
}

内嵌类

为外围类服务,不影响外围类

#include <iostream>
#include <vector>
using namespace std;
template <class T>
class A{
public:
    int a;
    class B{
    public:
        int b=10;
    };
};
int main()
{
    cout << sizeof (A<int>) << endl;//4
    A<int>::B b_obj;
    cout << b_obj.b << endl;
    cout << "------------vetor容器---------------" << endl;
    vector<int> v;
    for(int i=0;i<10;i++){
        v.push_back(rand()%100+1);
    }
    vector<int>::iterator it;
    for(it=v.begin();it!=v.end();it++){
        cout << *it << "   ";
    }
    cout << endl;
    return 0;
}

注意: 外围类和内围类之间不能相互访问,特殊的:静态属性

类模板的特化

#include <iostream>
using namespace std;
template <class T>
class A{
public:
    A(){
        cout << " A basics" << endl;
    }
};
template <>
class A<int>
{
public:
    A(){
        cout << " A 全特化 " << endl;
    }
};
template <class T>
class A<T*>
{
public:
    A(){
        cout << " A 偏特化" << endl;
    }
};
template <>
class A<int*>
{
public:
    A(){
        cout << " A 的全特化" << endl;
    }
};
template <class Ret,class Arg1,class Arg2>
class A<Ret (*)(Arg1,Arg2)>{
public:
    A(){
        cout << " A 的偏特化" << endl;
    }
};
int add(int a,int b){
    return  a+b;
}
int main()
{
    A<int> a;
    A<float> a1;
    A<int *> a2;
    A<int(*)(int,int)> a3=add;
    return 0;
}

类实例>匹配的全特化模板>匹配的偏特化模板>基础模板

函数符(Function)

函数对象(Functor),仿函数

保存函数调用签名的形式:

函数对象:是类对象,这个类对象的类中有一个小括号重载运算符函数。

#include <iostream>
using namespace std;
template<class T>
class A{
private:
    T str;
public:
    inline A(const T& t){
        this->str=t;
    }
    inline void  operator()(){
        cout << this->str << endl;
    }
};
void showInfo(){
    cout << "hello" << endl;
}
int main()
{
    showInfo();
    cout << "---------------------------------" << endl;
    A<string> a("functor is hello");
    a();
    return 0;
}

特点:

函数对象是类对象,当类对象调用成员函数时,函数符合内联条件,自动升级为内联函数,调用比普通函数效率高

函数对象可以直接使用类中定义的属性

函数对象具有具体的类型

函数对象一般不会单独使用,一般作为算法策略使用:

#include <iostream>
using namespace std;
template <class T>
T my_greate(T t1,T t2){
    return t1>t2?t1:t2;
}
template <class T>
T my_less(T t1,T t2){
    return t1<t2?t1:t2;
}
template <class T,class Compair>//Compair是获取到的函数类型 T是获取到的数据类型
T compair(T t1,T t2,Compair f){//Compair f=my_greate<int>
    return f(t1,t2);
}
//声明两个函数对象
template <class T>
class my_Greate{
public:
    T operator()(T t1,T t2){
        return t1>t2?t1:t2;
    }
};
template <class T>
class my_Less{
public:
    T operator()(T t1,T t2){
        return t1<t2?t1:t2;
    }
};
int main()
{
    int a=10,b=20;
    cout << "获取较大的值" << compair(a,b,my_greate<int>) << endl;
    cout << "获取较小的值" << compair(a,b,my_less<int>) << endl;
    cout << "使用函数对象,提高调用效率" << endl;
    cout << "获取较大的值" << compair(a,b,my_Greate<int>()) << endl;
    cout << "获取较小的值" << compair(a,b,my_Less<int>()) << endl;
    return 0;
}

函数对象术语

当函数对象的类中的小阔号运算符只有一个形参,所定义对象时,这个对象叫做一元函数对象

当函数对象的类中的小阔号运算符只有二个形参,所定义对象时,这个对象叫做二元函数对象

当函数对象的类中的小阔号运算符有多个形参,所定义对象时,这个对象叫做多元函数对象

当函数对象的类中的小阔号运算符返回值时一个bool类型,这个对象叫做谓词(Predicate)

匿名函数对象Lambda表达式

Lambda表达式分析:

#include <iostream>
using namespace std;
class Lambda{
private:
//    int _a;
    int& _b;
public:
//    Lambda(){
//    }
//    Lambda(int& a){
//        //相当于构造函数中是一个值的拷贝
//        this->_a=a;
//    }
    Lambda(int& b):_b(b){
        //相当于构造函数中是一个值的拷贝
        this->_b=b;
    }
    void operator()(){
        cout << "hello world!" << endl;
    }
};
int main()
{
    //c++11 auto关键字:表示由编译器自动推导出的数据类型。不可作为函数形参
    auto f=[](){cout << "hello world" << endl;};
    f();
//    Lambda()();
//    auto f1=Lambda();
//    f1();
//    int a=100;
//    auto f2=[=](){
//        cout << a << endl;
//    };
//    f2();
    int b=10;
    cout << "b的地址:" << &b << endl;
    auto f3=[&](){
        cout << "b的地址:" << &b << endl;
    };
    f3();
    int x=100,y=200;
    auto f4=[&]()mutable{//mutable易变关键字,与const关键字相反
        int temp=x;
        x=y;
        y=temp;
    };
    f4();
    cout << "x=" << x << "  y=" << y << endl;
    return 0;
}

包装器

类模板std::function 是通用的多态函数封装器。 std::function 的实例能存储、复制及调用任何可调用对象。C++语言中有多种可调用对象:函数、函数指针、lambda表达式、bind创建的对象以及重载了函数调用运算符的类(仿函数)等。

和其他对象一样,可调用对象也有类型。如:每个lambda有它自己唯一的(未命名)类类型;函数及函数指针的类型则由其返回值类型和实参类型决定。然而,不同类型的可调用对象可能共享同一种调用形式。调用形式指明了返回的类型以及传递给调用的实参类型。一种调用形式对应一个函数(function)类型。

标准使用:

#include <iostream>
#include <functional>
using namespace std;
int add(int a,int b){//add函数类型:int (int ,int )
    return a+b;
}
class A{
public:
    int add(int a,int b){//int A::(A* const,int,int)
        return a+b;
    }
};
class B{
public:
    int operator()(int a,int b){//int A::(int,int)
        return a+b;
    }
};
int main()
{
    //使用标准包装器function包装全局函数
    function<int (int,int)> f1=add;
    cout << f1(10,20) << endl;
    //使用标准包装器function包装类成员函数
    A a;
    function<int(A* const,int,int)> f2=&A::add;
    cout << f2(&a,20,30) << endl;
    //使用标准包装器function包装一个函数对象
    function<int(int,int)> f3=B();
    cout << f3(10,20) <<endl;
    //使用标准包装器function包装一个Lambda表达式
    function <int (int,int)> f4=[](int a,int b){return a+b;};
    cout << f4(100,220) << endl;
    return 0;
}

封装一个包装器:

#include <iostream>
#include <functional>
using namespace std;
template <class T>
class My_function{
public:
    My_function(){
        cout << "my_function is basics" << endl;
    }
};
//模板偏特化
template<class Ret,class Arg1,class Arg2>
class My_function<Ret (Arg1,Arg2)>
{
private:
    //typedef Ret(*Pfunc)(Arg1,Arg2);
    using Pfunc=Ret (*)(Arg1,Arg2);
    Pfunc f;
public:
    My_function(Pfunc f){
        this->f=f;
    }
    //包装器核心
    Ret operator()(Arg1 arg1,Arg2 arg2){
        return f(arg1,arg2);
    }
};
int add(int a,int b){//类型 int (int ,int)
    return a+b;
}
int main()
{
    My_function<int (int,int)> f1=add;
    cout << f1(10,20) << endl;
    std::function<int(int,int)> f2=add;
    cout << f2(20,40) << endl;
    return 0;
}

加载全部内容

相关教程
猜你喜欢
用户评论