C++泛型编程综合讲解
编程远泊 人气:0函数模板
进一步把函数中的或类中的数据类型进一步抽象,这个抽象的类型就叫泛型
模板:函数模板,类模板
模板就是把函数(或类)中的类型抽象出来,有指定类型方可使用
模板可以有默认类型,类模板规则(函数模板,不存在规则):从右到左
模板编译机制:
- 编译器并不是把函数(类)模板处理成能够处理任何类型的函数(类),而是一个函数(类)的生成器。
- 函数(类)模板通过具体类型产生不同的函数实例(类实体)。
- 编译器会对函数(类)模板进行两次编译,第一次在声明的地方对模板本身进行编译(主要是对语法进行检查,在调用的地方对参数替换),再次对代码进行编译,二次编译也被称之为延时编译。
注意:模板函数需要编译两次,是慢于定义函数的原因
关键字template是模板标识符
<>是泛型,指定的参数类型列表
class用来修饰泛型,typename
也可进行修饰
#include <iostream> using namespace std; //int add(int a,int b){ // return a+b; //} //float add(float a,float b){ // return a+b; //} //string add(string a,string b){ // return a+b; //} //抽象的泛型 template<class T> T add(T a,T b){ cout << "i am is template" << endl; return a+b; } int main() { int a=10,b=20; cout << add(a,b) << endl; float a1=5.21; float b1=13.14; cout << add(a1,b1) << endl; string a2="yao",b2="liang"; cout << add(a2,b2) << endl;//隐式调用 cout << add<string>(a2,b2) << endl;//显示调用 return 0; }
显示调用和隐式调用
#include <iostream> using namespace std; //抽象的泛型 typename<class T> T add(T a,T b){ return a+b; } int main() { string a2="yao",b2="liang"; cout << add(a2,b2) << endl;//隐式调用 cout << add<string>(a2,b2) << endl;//显示调用 return 0; }
函数模板的特化
前提:模板的特化(泛型没有制定类型)是依赖基础模板的
产生原因:当函数的算法逻辑与实际的参数类型不匹配时,就应该对类型进行特化
#include <iostream> using namespace std; template <class T> T compair(T t1,T t2){ return t1>t2?t1:t2; } //对基础模板进行全特化(函数模板只能全特化,不能偏特化) template <> const char* compair(const char* str1,const char* str2){ return string(str1)>string(str2)?str1:str2; } int main() { int a=10,b=20; cout << compair(a,b) << endl; const char* str1="yaoliang"; const char* str2="yao"; cout << compair(str1,str2) << endl; return 0; }
类型可以传*号
#include <iostream> using namespace std; template <class T> T compair(T t1,T t2){//char *t1=name; cout << string(t1) << endl; } int main() { char *name="minmin"; char *name1="sun"; compair(name,name1); // int a=10; // int *p=&a; // int *q=&a; // compair(p,q); return 0; }
函数模板的调用优先级
函数实例>匹配的特化模板>基础模板
#include <iostream> using namespace std; template <class T> T compair(T t1,T t2){ cout << "i am is basics" <<endl; return t1>t2?t1:t2; } //对基础模板进行全特化(函数模板只能全特化,不能偏特化) template <> const char* compair(const char* str1,const char* str2){ cout << "i am is specialization" <<endl; return string(str1)>string(str2)?str1:str2; } inline int compair(int a,int b){ cout << "i am is inline fun" << endl; return a>b?a:b; } int main() { int a=10,b=20; cout << compair(a,b) << endl; const char* str1="yaoliang"; const char* str2="yao"; //如果是隐式调用,优先调用与之类型相匹配的特化模板 cout << compair(str1,str2) << endl; //显性调用,直接调用 cout << compair<const char*>(str1,str2) << endl; cout << compair<int>(a,b) << endl; return 0; }
函数模板的实参推演
函数模板具有函数特性:函数重载
#include <iostream> using namespace std; template <class T> T add(T t1,T t2){ cout << "i am is one_basics" <<endl; return t1+t2; } template <class T1,class T2> T1 add(T1 t1,T2 t2){ cout << "i am is two_basics" <<endl; return t1+t2; } int main() { int a=10,b=20; cout << add(a,b) << endl; double c=13.14; cout << add(c,a) << endl; return 0; }
函数泛型不仅是一个单一抽象类型,也可以是一个组合类型。
#include <iostream> #include <typeinfo>//信息识别头 using namespace std; template <class T> void my_funtion(T t){ cout << "i am is basics" << endl; cout << typeid (t).name() << endl; } template <> void my_funtion(int* t){ cout << "指针类型的特化" << endl; cout << typeid (t).name() << endl; } template <class Ret,class Arg1,class Arg2> void my_funtion(Ret (*arg)(Arg1,Arg2)){ cout << typeid (Ret).name() << endl; cout << typeid (Arg1).name() << endl; cout << typeid (Arg2).name() << endl; cout << "指针类型的复合模板" << endl; } int add(int a,int b){ return a+b; } int main() { int a=10; my_funtion(a); int *p=&a; my_funtion(p); my_funtion(add); return 0; }
在c++11关于函数模板的可变参符号…
…如果修饰类型(变量),则表示类型(变量)不定引数,个数不同,类型不同的多个参数。
#include <iostream> using namespace std; //函数实例 void print(){ }; template <class FirstArg,class... Args> void print(FirstArg firstArg,Args... args){//int firstArg=100,...(3.14,"yaoliang") //3.14 ...("yaoliang") //"yaoliang" ...() cout << firstArg << " "; print(args...); } int main() { print(100,3.14,"yaoliang"); return 0; }
类模板
像声明一个类一样声明一个模板,无隐式调用,模板规则:使用默认泛型参数类型,从右向左依次指定
#include <iostream> using namespace std; template <class T1,class T2> class Person{ private: T1 _name; T2 _age; public: Person(T1 name,T2 age){ this->_age=age; this->_name=name; } int getAge(){ return this->_age; } string getName(){ return this->_name; } virtual void showInfo(){ cout << "姓名:" << this->_name << ",年龄:" << this->_age << endl; } }; template <class T1,class T2,class T3=int> class Stu:public Person<T1,T2> { private: const T3 _id; static int count; public: Stu(T1 name,T2 age,T3 id):Person<T1,T2>(name,age),_id(id){ count++; } void showInfo()override{ cout << "学号:" << this->_id << ",姓名:" << this->getName() << ",年龄:" << this->getAge() << endl; } static int get_count(){ return count; } }; template <class T1,class T2,class T3> int Stu<T1,T2,T3>::count=0; int main() { Person<string,int> *person=new Stu<string,int,int>("yao",19,1); person->showInfo(); delete person; Stu<string,int> stu("sunsun",18,2);//使用缺省类型,从右往左 stu.showInfo(); cout << Stu<string,int,int>::get_count() << endl; return 0; }
分文件编程实现一个顺序栈
注意: .hpp
是类模板文件,声明和定义在同一个文件中
stack_cpp.hpp
:
#ifndef MY_STACK_HPP #define MY_STACK_HPP #include <exception> #include <stdexcept> #include <iostream> using namespace std; template <class T> class my_stack{ private: T* m_data; int capacity; int size; public: my_stack(int c=10); ~my_stack(); bool full(); bool empty(); void push(const T& val); void pop(); T& top(); }; #endif // MY_STACK_HPP template<class T> my_stack<T>::my_stack(int c) { this->capacity=c; this->m_data=new T[capacity]; this->size=0; } template<class T> my_stack<T>::~my_stack() { if(nullptr!=this->m_data){ delete [] this->m_data; this->m_data=nullptr; } capacity=size=0; } template<class T> bool my_stack<T>::full() { return size==capacity; } template<class T> bool my_stack<T>::empty() { return size==0; } template<class T> void my_stack<T>::push(const T &val) { if(full()){ return; } m_data[size]=val; size++; } template<class T> void my_stack<T>::pop() { if(this->empty()){ throw range_error("空了"); } size--; } template<class T> T &my_stack<T>::top() { return m_data[size-1]; }
main.cpp
:
#include <iostream> #include "my_stack.hpp" using namespace std; int main() { my_stack<int> s; s.push(1); s.push(2); s.push(3); while (!s.empty()) { cout << s.top() << endl; s.pop(); } return 0; }
内嵌类
为外围类服务,不影响外围类
#include <iostream> #include <vector> using namespace std; template <class T> class A{ public: int a; class B{ public: int b=10; }; }; int main() { cout << sizeof (A<int>) << endl;//4 A<int>::B b_obj; cout << b_obj.b << endl; cout << "------------vetor容器---------------" << endl; vector<int> v; for(int i=0;i<10;i++){ v.push_back(rand()%100+1); } vector<int>::iterator it; for(it=v.begin();it!=v.end();it++){ cout << *it << " "; } cout << endl; return 0; }
注意: 外围类和内围类之间不能相互访问,特殊的:静态属性
类模板的特化
#include <iostream> using namespace std; template <class T> class A{ public: A(){ cout << " A basics" << endl; } }; template <> class A<int> { public: A(){ cout << " A 全特化 " << endl; } }; template <class T> class A<T*> { public: A(){ cout << " A 偏特化" << endl; } }; template <> class A<int*> { public: A(){ cout << " A 的全特化" << endl; } }; template <class Ret,class Arg1,class Arg2> class A<Ret (*)(Arg1,Arg2)>{ public: A(){ cout << " A 的偏特化" << endl; } }; int add(int a,int b){ return a+b; } int main() { A<int> a; A<float> a1; A<int *> a2; A<int(*)(int,int)> a3=add; return 0; }
类实例>匹配的全特化模板>匹配的偏特化模板>基础模板
函数符(Function)
函数对象(Functor),仿函数
保存函数调用签名的形式:
- 全局函数指针
- 成员指针
- 函数对象
- lambda表达式
函数对象:是类对象,这个类对象的类中有一个小括号重载运算符函数。
#include <iostream> using namespace std; template<class T> class A{ private: T str; public: inline A(const T& t){ this->str=t; } inline void operator()(){ cout << this->str << endl; } }; void showInfo(){ cout << "hello" << endl; } int main() { showInfo(); cout << "---------------------------------" << endl; A<string> a("functor is hello"); a(); return 0; }
特点:
函数对象是类对象,当类对象调用成员函数时,函数符合内联条件,自动升级为内联函数,调用比普通函数效率高
函数对象可以直接使用类中定义的属性
函数对象具有具体的类型
函数对象一般不会单独使用,一般作为算法策略使用:
#include <iostream> using namespace std; template <class T> T my_greate(T t1,T t2){ return t1>t2?t1:t2; } template <class T> T my_less(T t1,T t2){ return t1<t2?t1:t2; } template <class T,class Compair>//Compair是获取到的函数类型 T是获取到的数据类型 T compair(T t1,T t2,Compair f){//Compair f=my_greate<int> return f(t1,t2); } //声明两个函数对象 template <class T> class my_Greate{ public: T operator()(T t1,T t2){ return t1>t2?t1:t2; } }; template <class T> class my_Less{ public: T operator()(T t1,T t2){ return t1<t2?t1:t2; } }; int main() { int a=10,b=20; cout << "获取较大的值" << compair(a,b,my_greate<int>) << endl; cout << "获取较小的值" << compair(a,b,my_less<int>) << endl; cout << "使用函数对象,提高调用效率" << endl; cout << "获取较大的值" << compair(a,b,my_Greate<int>()) << endl; cout << "获取较小的值" << compair(a,b,my_Less<int>()) << endl; return 0; }
函数对象术语
当函数对象的类中的小阔号运算符只有一个形参,所定义对象时,这个对象叫做一元函数对象
当函数对象的类中的小阔号运算符只有二个形参,所定义对象时,这个对象叫做二元函数对象
当函数对象的类中的小阔号运算符有多个形参,所定义对象时,这个对象叫做多元函数对象
当函数对象的类中的小阔号运算符返回值时一个bool
类型,这个对象叫做谓词(Predicate)
匿名函数对象Lambda表达式
Lambda表达式分析:
- []是函数对象的构造函数中的形参,获取外部实参时传递的形式
- []为空时,代表无参的空构造,对于lambda不进行捕获
- [=]相当于函数对象中的类中的构造函数为拷贝传参(值的传递)
- [&]相当于函数对象中的类中的构造函数为引用传递(别名)
- ()相当于小阔号运算符的形参列表
- {}相当于括号运算符的函数体
- 在lambda的形参列表后使用->返回值类型,明确返回值的类型
#include <iostream> using namespace std; class Lambda{ private: // int _a; int& _b; public: // Lambda(){ // } // Lambda(int& a){ // //相当于构造函数中是一个值的拷贝 // this->_a=a; // } Lambda(int& b):_b(b){ //相当于构造函数中是一个值的拷贝 this->_b=b; } void operator()(){ cout << "hello world!" << endl; } }; int main() { //c++11 auto关键字:表示由编译器自动推导出的数据类型。不可作为函数形参 auto f=[](){cout << "hello world" << endl;}; f(); // Lambda()(); // auto f1=Lambda(); // f1(); // int a=100; // auto f2=[=](){ // cout << a << endl; // }; // f2(); int b=10; cout << "b的地址:" << &b << endl; auto f3=[&](){ cout << "b的地址:" << &b << endl; }; f3(); int x=100,y=200; auto f4=[&]()mutable{//mutable易变关键字,与const关键字相反 int temp=x; x=y; y=temp; }; f4(); cout << "x=" << x << " y=" << y << endl; return 0; }
包装器
类模板std::function 是通用的多态函数封装器。 std::function 的实例能存储、复制及调用任何可调用对象。C++语言中有多种可调用对象:函数、函数指针、lambda表达式、bind创建的对象以及重载了函数调用运算符的类(仿函数)等。
和其他对象一样,可调用对象也有类型。如:每个lambda有它自己唯一的(未命名)类类型;函数及函数指针的类型则由其返回值类型和实参类型决定。然而,不同类型的可调用对象可能共享同一种调用形式。调用形式指明了返回的类型以及传递给调用的实参类型。一种调用形式对应一个函数(function)类型。
标准使用:
#include <iostream> #include <functional> using namespace std; int add(int a,int b){//add函数类型:int (int ,int ) return a+b; } class A{ public: int add(int a,int b){//int A::(A* const,int,int) return a+b; } }; class B{ public: int operator()(int a,int b){//int A::(int,int) return a+b; } }; int main() { //使用标准包装器function包装全局函数 function<int (int,int)> f1=add; cout << f1(10,20) << endl; //使用标准包装器function包装类成员函数 A a; function<int(A* const,int,int)> f2=&A::add; cout << f2(&a,20,30) << endl; //使用标准包装器function包装一个函数对象 function<int(int,int)> f3=B(); cout << f3(10,20) <<endl; //使用标准包装器function包装一个Lambda表达式 function <int (int,int)> f4=[](int a,int b){return a+b;}; cout << f4(100,220) << endl; return 0; }
封装一个包装器:
#include <iostream> #include <functional> using namespace std; template <class T> class My_function{ public: My_function(){ cout << "my_function is basics" << endl; } }; //模板偏特化 template<class Ret,class Arg1,class Arg2> class My_function<Ret (Arg1,Arg2)> { private: //typedef Ret(*Pfunc)(Arg1,Arg2); using Pfunc=Ret (*)(Arg1,Arg2); Pfunc f; public: My_function(Pfunc f){ this->f=f; } //包装器核心 Ret operator()(Arg1 arg1,Arg2 arg2){ return f(arg1,arg2); } }; int add(int a,int b){//类型 int (int ,int) return a+b; } int main() { My_function<int (int,int)> f1=add; cout << f1(10,20) << endl; std::function<int(int,int)> f2=add; cout << f2(20,40) << endl; return 0; }
加载全部内容