亲宝软件园·资讯

展开

Numpy np.array()函数使用方法指南

请你喝奶茶~ 人气:0

1、Numpy ndarray对象

numpy ndarray对象是一个n维数组对象,ndarray只能存储一系列相同元素。

#一维数组
[1,2,3,4]	#shape(4,)

#二维数组
[[1,2,3,4]]	#shape(1,4)

[[1,2,3,4],
 [5,6,7,8]]	#shape(2,4)

#三维数组
[
    [[1,2,3],[4,5,6]],
    [[7,8,9],[10,11,12]]
]	#shape(2,2,3)

2、创建numpy数组

numpy.array()使用说明:object是必须输入的参数,其余为可选参数。

import numpy as np
np.array(object,dtype,copy=True,order,ndmin,subok=Fasle)
#	object: 一个数组序列,例如[1,2,3,4]
#	dtype: 更改数组内的数据类型
#	copy: 数据源是ndarray时数组能否被复制,default=True
#	order: 选择数组的内存布局,C(行序列)|F(列序列)|A(默认)
#	ndmin: 数组维度
#	subok: bool类型,True,使用object的内部数据类型;False,使用object的数组的数据类型,default=Fasle

创建存储元素类型不同的数组:

#int型
import numpy as np
a=np.array([1,2,3,4],dtype=int)	#"dtype="可省略
print(a)
a.dtype
'''
输出:
[1 2 3 4]
dtype('int32')
'''

#float型
b=np.array([1,2,3,4],dtype=float)
print(b)
b.dtype
'''
输出:
[1. 2. 3. 4.]
dtype('float64')
'''

创建生成器:

a=np.array([i*10 for i in range(10)])
print(a)
b=np.array([i+2 for i in range(10)])
print(b)
'''
输出:
[ 0 10 20 30 40 50 60 70 80 90]
[ 2  3  4  5  6  7  8  9 10 11]
'''

当输入的object元素有不同类型时,将保留存储空间最大的类型:

x1=np.array([1,2,3,4,5.1])
print(x1)
x2=np.array([1,2,3,'a'])
print(x2)
x3=np.array([1,2.1,'a'])
print(x3)
'''
输出:
[1.  2.  3.  4.  5.1]
['1' '2' '3' 'a']
['1' '2.1' 'a']
'''

当多维数组元素个数不一致时:

x=np.array([[1,2,3],[1,2,3,4],[1,2,3,4,5]],dtype=object) 	#存储长度不一致序列时,应有“dtype=object”,否则会报错
print(x)
print(x.shape)
print(x.ndim)	#输出数组的维度,2Darray强制转换成1Darray
'''
输出:
[list([1, 2, 3]) list([1, 2, 3, 4]) list([1, 2, 3, 4, 5])]
(3,)
1
'''

float强制转化int(向下取整):

a=np.array([1,2,3.1],int)
b=np.array([1,2,3.7],int)
print(a)
print(b)
'''
输出:
[1 2 3]
[1 2 3]
'''

用copy参数定义是否创建副本:

#默认copy=True情况下,复制创建x1的副本为x2
x1=np.array([1,2,3])
x2=np.array(x1)
print('x1 ',id(x1),'x2',id(x2))
#更改x2的值,x1的值不会发生改变,反之,修改x1的值,x2也不会发生改变,因为二者地址不同
x2[2]=100
print('x1',x1)
print('x2',x2)
'''
输出:
x1  2055556179312 x2 2055300844976   x1 x2地址不同
x1 [1 2 3]
x2 [  1   2 100]
'''

#copy=Fasle情况下,复制创建x1的副本为x2
x1=np.array([1,2,3])
x2=np.array(x1,copy=False) 
print('x1 ',id(x1),'x2',id(x2))
#更改x2的值,x1的值会发生改变,且x1永远等于x2,因为二者地址相同
x2[2]=100
print('x1',x1)
print('x2',x2)
'''
输出:
x1  2055300125584 x2 2055300125584   x1 x2地址相同
x1 [  1   2 100]
x2 [  1   2 100]
'''

#另一种创建副本方法:copy() 这种方法更常用
x1=np.array([1,2,3])
x2=x1.copy()
print('x1 ',id(x1),'x2',id(x2))
#更改x2的值,x1的值不会发生改变
x2[2]=100
print('x1',x1)
print('x2',x2)
'''
输出:
x1  2055556233040 x2 2055556062160
x1 [1 2 3]
x2 [  1   2 100]
'''

ps:如果直接用 x2=x1 的形式复制array,此时x1 x2 共用同一个地址

用ndmin改变数组维度(升维有效,降维无效):

a=np.array([1,2,3,4],ndmin=2)
print('a ',a)
b=np.array([[1,2],[1,2]],ndmin=3)
print('b ',b)
#2D降维成1D,但输出结果仍为2D
c=np.array([[1,2],[1,2]],ndmin=1)
print('c ',c)
'''
输出:
a  [[1 2 3 4]]
b  [[[1 2]
  [1 2]]]
c  [[1 2]
 [1 2]]
'''

用subok参数(bool值)确定数据类型:

x1=np.mat([1,2,3])
a1=np.array(x1) #存储为原类型
b1=np.array(x1,subok=True)  #存储为数组类型
print('x1 ',type(x1),'a1 ',type(a1),'b1 ',type(b1))

#原始格式为list,无论subok为何值都转换成数组类型
x2=[[1,2],[1,2],[1]]
a2=np.array(x2,dtype=object) #存储为原类型
b2=np.array(x2,dtype=object,subok=True)  #存储为数组类型
print('x2 ',type(x2),'a2 ',type(a2),'b2 ',type(b2))
'''
输出:
x1  <class 'numpy.matrix'> a1  <class 'numpy.ndarray'> b1  <class 'numpy.matrix'>
x2  <class 'list'> a2  <class 'numpy.ndarray'> b2  <class 'numpy.ndarray'>
'''

总结

加载全部内容

相关教程
猜你喜欢
用户评论