亲宝软件园·资讯

展开

RUST异步流处理方法详细讲解

上后左爱 人气:0

Stream 特质

在同步Rust 中流的核心是Iterator 提供了一种在序列中产生项的方法,并在它们之间进行阻塞,通过迭代器传递给其他迭代器

在异步Rust中流的核心Stream, 允许其他任务在当前阻塞等待时允许

Read/Write, AsyncRead/AsyncWrite

fn main() {
    let f = file::create("E:\\foot.txt").await?;
    f.write_all(b"hello world").await?;
    let f = file::open("E:\\foot.txt").await?;
    let mut buffer = Vec::new();
    f.read_to_end(&mut buffer).await?;
}

Stream 经典子流

source: 可以生成数据流

Sink: 可以消费数据流

Through: 消费数据,对其进行操作生成新数据流

Duplex: 流可以生成数据,也可以独立消费数据(AsyncWrite/Read)

asyncread 和 Stream 区别

这两种对byte 进行操作,AsyncRead 只能对byte进行操作(生成未解析数据),Stream对任何类型的数据进行操作(生成解析数据)

使用for_each_concurrent, try_for_each_concurrent 进行并发的处理流,进行流的处理

yield 匿名流

在async 异步过程中使用yield 关键字, 类似于Python 迭代产生时候可以返回,下一次从上一次返回值在进行开始跌打

try_join

如果某个发生错误后会立即返回数据

使用try_join 需要函数返回结果,并且错误的类型,才能正常运行

use futures;
use tokio::runtime::Runtime;
use std::io::Result;
async fn func1() -> Result<()> {
    tokio::time::delay_for(tokio::time::Duration::from_secs(1)).await;
    println!("func1 finished!");
	Ok(())
}
async fn func2() -> Result<()> {
    println!("func2 finished!");
	Ok(())
}
async fn async_main() {
    let f1 = func1();
    let f2 = func2();

    if let Err(_) = futures::try_join!(f1, f2) {
		println!("Err!");
	}
}
fn main() {
    let mut runtime = Runtime::new().unwrap();
    runtime.block_on(async_main());
    println!("Hello, world!");
}

select

使用场景 有三个运行任务 ,只要其中一个完成后立马返回,使用select

在使用select启动使用pin_mut!(f1, f2), 使用select! 进行匹配

use futures::{select, future::FutureExt, pin_mut};
use tokio::runtime::Runtime;
use std::io::Result;
async fn func1() -> Result<()> {
	tokio::time::delay_for(tokio::time::Duration::from_secs(2)).await;
	println!("func1 finished!");
	Ok(())
}
async fn func2() -> Result<()> {
	println!("func2 finished!");
	Ok(())
}
async fn async_main() {
	let f1 = func1().fuse();
	let f2 = func2().fuse();
	pin_mut!(f1, f2);
	// 使用select 进行匹配
	select! {
		_ = f1 => println!("func1 finished++++++!"),
		_ = f2 => println!("func2 finished++++++!"),
	}
}
fn main() {
// 使用tokio的runtime()
	let mut runtime = Runtime::new().unwrap();
	runtime.block_on(async_main());
    println!("Hello, world!");
}

select! y与default/complete 一起联合使用

complete :表示两个都已经就绪,default表示两个都没有就绪

use futures::{future, select, executor};
async fn count() {
	let mut a_fut = future::ready(4);
	let mut b_fut = future::ready(6);
	let mut total = 0;	
	loop {
		select! {
			a = a_fut => total += a,
			b = b_fut => total += b,
			complete => break,   //表示所有的分支都已经完成,并且不会再取得进展的情况
			default => unreachable!(), //表示没有分支完成
		}
	}
	assert_eq!(total, 10);
}
fn main() {
	executor::block_on(count());
    println!("Hello, world!");
}

complete 表示所有分支都已经完成,并且不会取得进展的情况,如上所示,使用loop 第一次b分支准备好,下一次循环可能是a分支,最后两个分支都已经完成后 就break退出

complete 类似让所有分支都完成后直接退出

SELECT宏几个条件

async 问号使用

如果返回类型有Result<T, E> 结果使用.await?

Send trait

在保证多线程安全时候 需要保证接口实现Send trait 、sync trait 才能保证多线程的安全

Send trait 表示数据能够在线程间安全的发送,sync trait 能够保证线程安全的引用

use std::rc::Rc;
#[derive(Default)]
struct NoSend(Rc<()>);
async fn bar() {}
async fn foo() {
	NoSend::default();
	//{
	//	let x = NoSend::default();
	//	//to do : xxxxx
	//}
	let _ = NoSend::default();
	bar().await;
}
//Send trait:如果所有的子类型都是实现Send trait的,那么它本身也是实现Send Trait的
// 如果内部没有定义 只是使用 是一个Send Trait 主要是在 生成 匿名结构体中 会进行解析
not let x: impl Send Trait
//struct Foo {
//	f: Future,
//}
let x: Not impl Send Trait
//struct Foo {
//	x: NoSend, //not impl Send Trait
//	f: Future, //impl Send Trait
//}
fn required_send(_: impl Send) {}
fn main() {
	required_send(foo());
    println!("Hello, world!");
}

加载全部内容

相关教程
猜你喜欢
用户评论