亲宝软件园·资讯

展开

关于scipy.optimize函数使用及说明

大虾飞哥哥 人气:0

scipy.optimize函数使用

简单使用scipy.optimize,训练逻辑回归损失函数,得到权值。

scipy.optimize模块包含什么?

该scipy.optimize包提供几种常用的优化算法。可以使用详细列表: scipy.optimize(也可以通过help(scipy.optimize)找到)。

该模块包含:

1、使用多种算法(例如BFGS,Nelder-Mead单形,牛顿共轭梯度,COBYLA或SLSQP)对多元标量函数进行无约束和无约束的最小化(最小化)

2、全局(强力)优化例程(例如,盆地跳动,differential_evolution)

3、最小二乘最小化(least_squares)和曲线拟合(curve_fit)算法

4、标量单变量函数最小化器(minimum_scalar)和根查找器(牛顿)

5、使用多种算法(例如,混合鲍威尔,莱文贝格-马夸特或大型方法,例如牛顿-克里洛夫)的多元方程组求解器(root)。

使用步骤

1、函数介绍

import numpy as np
from scipy.optimize import minimize

函数入参:

scipy.optimize.minimize(
                       fun,  #可调用的目标函数。
                       x0,  #ndarray,初值。(n,)
                       args=(), #额外的参数传递给目标函数及其导数
                       method=None, #类型的解算器。应该是其中之一:
                                    #‘Nelder-Mead'、‘Powell'
                                    #‘CG'、‘BFGS'
                                    #‘Newton-CG'、‘L-BFGS-B' 
                                    #‘TNC'、‘COBYLA'
                                    #‘SLSQP'、‘dogleg' 
                                    #‘trust-ncg' 

                       jac=None, #目标函数的雅可比矩阵(梯度向量)。
                                 #仅适用于CG, BFGS, Newton-CG, 
                                 #L-BFGS-B, TNC, SLSQP, dogleg,
                                 #trust-ncg。如果jac是一个布尔值,
                                 #且为True,则假定fun将随目标函数返回
                                 #梯度。如果为False,则用数值方法估计梯
                                 #度。Jac也可以是返回目标梯度的可调用对
                                 #象。在这种情况下,它必须接受与乐趣相同
                                 #的论点。
                       hess=None, 
                       hessp=None,#目标函数的Hessian(二阶导数矩阵)或
                                  #目标函数的Hessian乘以任意向量p。
                                  #仅适用于Newton-CG, dogleg,
                                  #trust-ncg。只需要给出一个hessp或
                                  #hess。如果提供了hess,则将忽略
                                  #hessp。如果不提供hess和hessp,则用
                                  #jac上的有限差分来近似Hessian积。
                                  #hessp必须计算Hessian乘以任意向量。
               
                       bounds=None, #变量的边界(仅适用于L-BFGS-B, 
                                    #TNC和SLSQP)。(min, max)
                                    #对x中的每个元素,定义该参数的
                                    #边界。当在min或max方向上没有边界
                                    #时,使用None表示其中之一。
                       constraints=(), #约束定义
                                          #(仅适用于COBYLA和SLSQP)
                       tol=None, #终止的边界。
                       callback=None, 
                       options=None)

返回值: res : OptimizeResult

#以OptimizeResult对象表示的优化结果。重要的属性有:x是解决方案数组,
#success是一个布尔标志,指示优化器是否成功退出,以及描述终止原因的消息。

使用scipy.optimize进行优化

首先看一看这个函数的形式

scipy.optimize.fmin_cg(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)

要最小化的目标函数。这里 x 必须是在搜索最小值时要更改的变量的一维数组,而 args 是 f 的其他(固定)参数。

用户提供的 xopt 初始估计值,即 x 的最优值。它必须是一维值数组。

返回 f 在 x 处的梯度的函数。这里 x 和 args 与上面对 f 的说明相同。返回的值必须是一维数组。默认为 None,在这种情况下,梯度是数值近似的(参见下面的 epsilon)。

传递给的参数值f和fprime.当需要额外的固定参数来完全指定函数时,必须提供f和fprime.

当梯度的范数小于 gtol 时停止。

用于梯度范数的顺序(-np.Inf 是最小值,np.Inf 是最大值)。

何时使用的步长fprime是数值近似的。可以是标量或一维数组。默认为sqrt(eps), 用 eps 表示浮点机器精度。通常sqrt(eps)约为 1.5e-8。

要执行的最大迭代次数。默认为 200 * len(x0) 。

如果为 True,除了 xopt 之外,还返回 fopt、func_calls、grad_calls 和 warnflag。有关可选返回值的更多信息,请参阅下面的返回部分。

如果为 True,则返回收敛消息,然后是 xopt。

如果为 True,则将每次迭代的结果添加到返回值中。

一个可选的用户提供的函数,在每次迭代后调用。称为callback(xk),其中xk是的当前值x0.

下面是返回值

最小化 f 的参数,即 f(xopt) == fopt 。

找到最小值,f(xopt)。仅在 full_output 为 True 时返回。

function_calls 的数量。仅在 full_output 为 True 时返回。

进行的梯度调用次数。仅在 full_output 为 True 时返回。

带有警告状态的整数值,仅在 full_output 为 True 时返回。

数组列表,包含每次迭代的结果。只有当retall 为True 时才返回。

下面是一个实际运行的实例

from scipy import optimize
args = (2, 3, 7, 8, 9, 10)
def f(x,*args): # args是该函数需要用到的其他值
    u,v=x
    a,b,c,d,e,f=args
    return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f

def gradf(x,*args):
    u,v=x
    a, b, c, d, e, f = args
    gu=2*a*u+b*v+d
    gv=b*u+2*c*v+e
    return np.asarray((gu,gv))
x0 = np.asarray((0, 0))  # 迭代的初始点
res = optimize.fmin_cg(f, x0, fprime=gradf, args=args,full_output=True)
# 直接运行的话就会出现下面的东西
'''
Optimization terminated successfully.
         Current function value: 1.617021
         Iterations: 4
         Function evaluations: 8
         Gradient evaluations: 8
'''
# print(res) # [-1.80851064 -0.25531915] # 这是没有添加full_output=True的时候
# print(type(res)) # <class 'numpy.ndarray'>
# 添加过之后full_output=True
print(res)  # (array([-1.80851064, -0.25531915]), 1.6170212765957448, 8, 8, 0)
print(type(res))  # <class 'tuple'>
# 第一个是代表最小化后的自变量的参数
# 第二个是函数的最小值
# 第三个是函数调用的次数
# 第四个是梯度调用的次数
# 第五个是带有警告状态的整数值,返回0表示成功

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论