亲宝软件园·资讯

展开

解读时间序列分析之ADF检验

大虾飞哥哥 人气:0

一、ADF检验

在使用很多时间序列模型的时候,如 ARMA、ARIMA,都会要求时间序列是平稳的,所以一般在研究一段时间序列的时候,第一步都需要进行平稳性检验,除了用肉眼检测的方法,另外比较常用的严格的统计检验方法就是ADF检验,也叫做单位根检验。

ADF检验全称是 Augmented Dickey-Fuller test,顾名思义,ADF是 Dickey-Fuller检验的增广形式。DF检验只能应用于一阶情况,当序列存在高阶的滞后相关时,可以使用ADF检验,所以说ADF是对DF检验的扩展。

二、单位根

一阶AR模型,即AR(1)的情况,其模型如下:

如果α1 = 1 ,成为单位根。该模型就是随机游走,我们知道它是不平稳的。

换个思路想象一下,当α1 = 1 ,那么前一时刻的收益率对当下时刻的影响是100%的,不会减弱;那么就算是很远的某个时刻,当下对它的影响还是不会消除,所以方差(表现在波动)是受前面所有时刻的影响,是和 t 相关的,因此不平稳;

如果α1 > 1,那么当前时刻的波动不仅受前面时刻的影响,还被放大了,所以肯定不平稳;

只有当α1 < 1 的时候,前面时刻的波动对当前时刻的影响会逐渐减小。可以计算此时的自协方差以及自相关系数是一个固定值。所以这种情况下,序列是平稳的。

三、ADF检验的原理

ADF检验就是判断序列是否存在单位根:如果序列平稳,就不存在单位根;否则,就会存在单位根。

所以,ADF检验的 H0 假设就是存在单位根,如果得到的显著性检验统计量小于三个置信度(10%,5%,1%),则对应有(90%,95%,99%)的把握来拒绝原假设。

四、ADF检验的python实现

ADF检验可以通过python中的 statsmodels 模块,这个模块提供了很多统计模型。

1.引入库

代码如下:

from statsmodels.tsa.stattools import adfuller

2.函数说明

adfuller函数的参数意义分别是:

返回值意义为:

五、时间序列分析

1.使用IH2112股指期货数据为例

2.使用IH2112股指期货数据为例

    result = adfuller(ih_df["IH2112"].values)
    print(result)

3. 将数据进行一阶差分滞后

    ih_df_diff = np.diff(ih_df["IH2112"].values)
    result = adfuller(ih_df_diff)
    print(result)

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论