亲宝软件园·资讯

展开

Python使用imagehash库生成ahash算法的示例代码

ponponon 人气:0

知识点补充

aHash算法

Hash算法进行图片相似度识别的本质,就是将图片进行Hash转化,生成一组二进制数字,然后通过比较不同图片的Hash值距离找出相似图片。aHash中文叫平均哈希算法,顾名思义,在进行转化过程中将用到像素均值。

基本原理:

1、缩小尺寸。这样做会去除图片的细节,只保留结构、明暗等基本信息,目的是统一图片大小,保证后续图片都有相同长度的哈希值,方便距离计算。网上看到的案例基本都将尺寸缩小为8*8,64个像素点,暂时不清楚缩小为这个尺寸的原因,但如果觉得损失的信息太多,个人认为可以将尺寸适当调大,当然像素点多了后续计算就会稍慢一些。

2、灰度化处理。将图片全部转换为统一的灰度图。

3、计算像素均值。计算像素的灰度平均值(此处均值出现)。

4、哈希值计算。将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1,小于平均值,记为0,由此生成二进制数组。

5、图片配对,计算汉明距离。距离越近,越相似。当图片缩小为8*8时,通常认为汉明距离小于10的一组图片为相似图片。

前言

有一个需求:计算图片的相似度

需要解决两个问题:

生成 ahash

『生成 ahash』 选用 python 下面的一个 imagehash 库。(github:https://github.com/JohannesBuchner/imagehash

from io import BytesIO
import numpy
import imagehash
from PIL import Image


def create_vector(file: BytesIO) -> bytes:
    image = Image.open(file)
    hash = imagehash.average_hash(image)

    _vector = []

    for h in hash.hash:
        _vector.extend(h)

    vector = bytes(
        numpy.packbits(
            [
                int(v)
                for v in _vector
            ],
            axis=-1
        ).tolist()
    )

    return vector

create_vector 函数输出的类型是 bytes,就是二进制序列

imagehash.average_hash(image) 输出的 hash 对象,hash 对象有一个 hash 属性,这个属性的类型是 list[list[bool]]打印出来就是长下面这样子,其实就是一个 8x8=64 bit 的序列

[[False False False False False False False False]
 [ True False False False  True False False False]
 [False False  True  True  True  True False False]
 [False False False  True  True False  True  True]
 [False False  True  True  True False False False]
 [False  True  True  True  True False False False]
 [False  True  True  True  True False  True  True]
 [False False False  True  True False  True  True]]

向量数据库

『存储和计算 ahash 之间的距离』选用 milvus

创建集合

定义集合:

import settings
from pymilvus import (
    connections,
    Collection,
    FieldSchema,
    CollectionSchema,
    DataType,
)
from loggers import logger

connections.connect(
    host=settings.MILVUS_CONFIG.host,
    port=settings.MILVUS_CONFIG.port,
)

schema = CollectionSchema([
    FieldSchema("id", DataType.INT64, is_primary=True, auto_id=True),
    FieldSchema("meta_id", DataType.INT64),
    FieldSchema("company_id", DataType.INT64),
    FieldSchema("image_vector", dtype=DataType.BINARY_VECTOR, dim=64)
])

# 集合不存在,则会自动创建集合;已存在,不会重复创建
collection = Collection(settings.MILVUS_CONFIG.collection.name, schema)

使用的向量类型是 dtype=DataType.BINARY_VECTOR,

为什么不选 float 是因为我不知道怎么把 ahash 转成 float

插入 ahash 到 milvus

class TestVector(unittest.TestCase):
    def test_insert_vector(self):
        """
        插入 ahash 到 milvus
        python -m unittest testing.test_milvus.TestVector.test_insert_vector
        """

        oss_file_path = 'image_hash/testing/WechatIMG193.jpeg'

        file = BytesIO(bucket.get_object(oss_file_path).read())
        vector = create_vector(file)
        m_pk = insert_vector(vector, meta_id=2, company_id=1)
        logger.debug(f'milvus pk: {m_pk}')

查询 ahash from milvus

def test_search(self):
    """
    批量调用后端接口入库
    python -m unittest testing.test_milvus.TestVector.test_search
    """
    oss_file_path = 'image_hash/testing/WechatIMG193.jpeg'

    file = BytesIO(open(BASE_DIR/'testing'/'resource'/'WechatIMG193.jpeg','rb').read())
    vector = create_vector(file)

    logger.debug(vector)

    rows: list[dict[str, Any]] = collection.search(
        data=[vector],
        param={"metric_type": 'L2', "params": {"nprobe": 32}},
        anns_field='image_vector',
        output_fields=['id', 'meta_id', 'company_id'],
        limit=10,
    )
    logger.debug(rows)
    logger.debug(type(rows))

加载全部内容

相关教程
猜你喜欢
用户评论