亲宝软件园·资讯

展开

pytorch+sklearn实现数据加载的流程

梁小憨憨 人气:0

之前在训练网络的时候加载数据都是稀里糊涂的放进去的,也没有理清楚里面的流程,今天整理一下,加深理解,也方便以后查阅。

pytorch+sklearn实现数据加载

epoch & batch_size & iteration

优化算法——梯度下降

深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。

Batch gradient descent

第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度,这称为批梯度下降(Batch gradient descent)

这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其二,由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 Full Batch Learning 可以使用 Rprop 只基于梯度符号并且针对性单独更新各权值。

对于更大的数据集,以上 2 个好处又变成了 2 个坏处:其一,随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。其二,以 Rprop 的方式迭代,会由于各个 Batch 之间的采样差异性,各次梯度修正值相互抵消,无法修正。这才有了后来 RMSProp 的妥协方案。

Stochastic gradient descent

另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降(Stochastic gradient descent)。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,达不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈。

Mini-batch gradient decent

为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大。

现在用的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的。

在小批量梯度下降的情况下,流行的批量大小包括32,64和128个样本。

再谈Batch_Size

在合理范围内,增大 Batch_Size 有何好处?

盲目增大 Batch_Size 有何坏处?

深度学习的第一项任务——数据加载

数据加载流程——重要

以BCICIV_2a数据为例

import mne
import numpy as np
import torch
import torch.nn as nn
class LoadData:
    def __init__(self,eeg_file_path: str):
        self.eeg_file_path = eeg_file_path

    def load_raw_data_gdf(self,file_to_load):
        self.raw_eeg_subject = mne.io.read_raw_gdf(self.eeg_file_path + '/' + file_to_load)
        return self

    def load_raw_data_mat(self,file_to_load):
        import scipy.io as sio
        self.raw_eeg_subject = sio.loadmat(self.eeg_file_path + '/' + file_to_load)

    def get_all_files(self,file_path_extension: str =''):
        if file_path_extension:
            return glob.glob(self.eeg_file_path+'/'+file_path_extension)
        return os.listdir(self.eeg_file_path)
class LoadBCIC(LoadData):
    '''Subclass of LoadData for loading BCI Competition IV Dataset 2a'''
    def __init__(self, file_to_load, *args):
        self.stimcodes=('769','770','771','772')
        # self.epoched_data={}
        self.file_to_load = file_to_load
        self.channels_to_remove = ['EOG-left', 'EOG-central', 'EOG-right']
        super(LoadBCIC,self).__init__(*args)

    def get_epochs(self, tmin=0,tmax=1,baseline=None):
        self.load_raw_data_gdf(self.file_to_load)
        raw_data = self.raw_eeg_subject
        # raw_downsampled = raw_data.copy().resample(sfreq=128)
        self.fs = raw_data.info.get('sfreq')
        events, event_ids = mne.events_from_annotations(raw_data)
        stims =[value for key, value in event_ids.items() if key in self.stimcodes]
        epochs = mne.Epochs(raw_data, events, event_id=stims, tmin=tmin, tmax=tmax, event_repeated='drop',
                            baseline=baseline, preload=True, proj=False, reject_by_annotation=False)
        epochs = epochs.drop_channels(self.channels_to_remove)
        self.y_labels = epochs.events[:, -1] - min(epochs.events[:, -1])
        self.x_data = epochs.get_data()*1e6
        eeg_data={'x_data':self.x_data,
                  'y_labels':self.y_labels,
                  'fs':self.fs}
        return eeg_data
data_path = "/home/pytorch/LiangXiaohan/MI_Dataverse/BCICIV_2a_gdf"
file_to_load = 'A01T.gdf'
'''for BCIC Dataset'''
bcic_data = LoadBCIC(file_to_load, data_path)
eeg_data = bcic_data.get_epochs() # {'x_data':, 'y_labels':, 'fs':}

X = eeg_data.get('x_data')
Y = eeg_data.get('y_labels')
Y.shape

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
X_train.shape

from sklearn.model_selection import StratifiedKFold
train_idx = {}
eval_idx = {}
skf = StratifiedKFold(n_splits=4, shuffle=True)
i = 0
for train_indices, eval_indices in skf.split(X_train, y_train):
    train_idx.update({i: train_indices})
    eval_idx.update({i: eval_indices})
    i += 1
train_idx.get(1).shape

def split_xdata(eeg_data, train_idx, eval_idx):
    x_train=np.copy(eeg_data[train_idx,:,:])
    x_eval=np.copy(eeg_data[eval_idx,:,:])
    x_train = torch.from_numpy(x_train).to(torch.float32)
    x_eval = torch.from_numpy(x_eval).to(torch.float32)
    return x_train, x_eval
def split_ydata(y_true, train_idx, eval_idx):
    y_train = np.copy(y_true[train_idx])
    y_eval = np.copy(y_true[eval_idx])
    y_train = torch.from_numpy(y_train)
    y_eval = torch.from_numpy(y_eval)
    return y_train, y_eval
x_train, x_eval = split_xdata(X_train, train_idx.get(1), eval_idx.get(1))
y_train, y_eval = split_ydata(Y_train, train_idx.get(1), eval_idx.get(1))
y_train.shape

from torch.utils.data import Dataset, DataLoader, TensorDataset
from tqdm import tqdm
def BCICDataLoader(x_train, y_train, batch_size=64, num_workers=2, shuffle=True):
    
    data = TensorDataset(x_train, y_train)

    train_data = DataLoader(dataset=data, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)

    return train_data
train_data = BCICDataLoader(x_train, y_train, batch_size=32)
for inputs, target in tqdm(train_data):
    print(target)

到此数据就读出来了!!!

相关API解释

sklearn.model_selection.train_test_split

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html?highlight=train_test_split

sklearn.model_selection.StratifiedKFold

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html?highlight=stratifiedkfold#sklearn.model_selection.StratifiedKFold

torch.utils.data.TensorDataset

http://pytorch.org/docs/stable/data.html?highlight=tensordataset#torch.utils.data.TensorDataset

torch.utils.data.DataLoader

http://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader

参考资料

深度学习中的batch、epoch、iteration的含义

神经网络中Batch和Epoch之间的区别是什么?

谈谈深度学习中的 Batch_Size

加载全部内容

相关教程
猜你喜欢
用户评论