Python基于随机采样一至性实现拟合椭圆
天人合一peng 人气:0检测这些圆,先找轮廓后通过轮廓点拟合椭圆
import cv2 import numpy as np import matplotlib.pyplot as plt import math from Ransac_Process import RANSAC def lj_img(img): wlj, hlj = img.shape[1], img.shape[0] lj_dis = 7 # 连接白色区域的判定距离 for ilj in range(wlj): for jlj in range(hlj): if img[jlj, ilj] == 255: # 判断上下左右是否存在白色区域并连通 for im in range(1, lj_dis): for jm in range(1, lj_dis): if ilj - im >= 0 and jlj - jm >= 0 and img[jlj - jm, ilj - im] == 255: cv2.line(img, (jlj, ilj), (jlj - jm, ilj - im), (255, 255, 255), thickness=1) if ilj + im < wlj and jlj + jm < hlj and img[jlj + jm, ilj + im] == 255: cv2.line(img, (jlj, ilj), (jlj + jm, ilj + im), (255, 255, 255), thickness=1) return img def cul_area(x_mask, y_mask, r_circle, mask): mask_label = mask.copy() num_area = 0 for xm in range(x_mask+r_circle-10, x_mask+r_circle+10): for ym in range(y_mask+r_circle-10, y_mask+r_circle+10): # print(mask[ym, xm]) if (pow((xm-x_mask), 2) + pow((ym-y_mask), 2) - pow(r_circle, 2)) == 0 and mask[ym, xm][0] == 255: num_area += 1 mask_label[ym, xm] = (0, 0, 255) cv2.imwrite('./test2/mask_label.png', mask_label) print(num_area) return num_area def mainFigure(img, point0): # params = cv2.SimpleBlobDetector_Params() # 黑色斑点面积大小:1524--1581--1400--周围干扰面积: 1325--1695--1688-- # # Filter by Area. 设置斑点检测的参数 # params.filterByArea = True # 根据大小进行筛选 # params.minArea = 10e2 # params.maxArea = 10e4 # params.minDistBetweenBlobs = 40 # 设置两个斑点间的最小距离 10*7.5 # # params.filterByColor = True # 跟据颜色进行检测 # params.filterByConvexity = False # 根据凸性进行检测 # params.minThreshold = 30 # 二值化的起末阈值,只有灰度值大于当前阈值的值才会被当成特征值 # params.maxThreshold = 30 * 2.5 # 75 # params.filterByColor = True # 检测颜色限制,0黑色,255白色 # params.blobColor = 255 # params.filterByCircularity = True # params.minCircularity = 0.3 point_center = [] # cv2.imwrite('./test2/img_source.png', img) img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # cv2.imwrite('./test2/img_hsv.png', img_hsv) w, h = img.shape[1], img.shape[0] w_hsv, h_hsv = img_hsv.shape[1], img_hsv.shape[0] for i_hsv in range(w_hsv): for j_hsv in range(h_hsv): if img_hsv[j_hsv, i_hsv][0] < 200 and img_hsv[j_hsv, i_hsv][1] < 130 and img_hsv[j_hsv, i_hsv][2] > 120: # if hsv[j_hsv, i_hsv][0] < 100 and hsv[j_hsv, i_hsv][1] < 200 and hsv[j_hsv, i_hsv][2] > 80: img_hsv[j_hsv, i_hsv] = 255, 255, 255 else: img_hsv[j_hsv, i_hsv] = 0, 0, 0 # cv2.imwrite('./test2/img_hsvhb.png', img_hsv) # cv2.imshow("hsv", img_hsv) # cv2.waitKey() # 灰度化处理图像 grayImage = cv2.cvtColor(img_hsv, cv2.COLOR_BGR2GRAY) # mask = np.zeros((grayImage.shape[0], grayImage.shape[1]), np.uint8) # mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) # cv2.imwrite('./mask.png', mask) # 尝试寻找轮廓 contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 合并轮廓 if len(contours) > 1: # print(contours) # 去掉离图中心最远的圆 max_idex, dis_max = 0, 0 for c_i in range(len(contours)): c = contours[c_i] cx, cy, cw, ch = cv2.boundingRect(c) dis = math.sqrt(pow((cx + cw / 2 - w / 2), 2) + pow((cy + ch / 2 - h / 2), 2)) if dis > dis_max: dis_max = dis max_idex = c_i contours.pop(max_idex) # print(contours) if len(contours) > 1: contours_merge = np.vstack([contours[0], contours[1]]) for i in range(2, len(contours)): contours_merge = np.vstack([contours_merge, contours[i]]) cv2.drawContours(img, contours_merge, -1, (0, 255, 255), 1) cv2.imwrite('./test2/img_res.png', img) # cv2.imshow("contours_merge", img) # cv2.waitKey() else: contours_merge = contours[0] else: contours_merge = contours[0] # RANSAC拟合 points_data = np.reshape(contours_merge, (-1, 2)) # ellipse edge points set print("points_data", len(points_data)) # 2.Ransac fit ellipse param Ransac = RANSAC(data=points_data, threshold=0.5, P=.99, S=.5, N=20) # Ransac = RANSAC(data=points_data, threshold=0.05, P=.99, S=.618, N=25) (X, Y), (LAxis, SAxis), Angle = Ransac.execute_ransac() # print( (X, Y), (LAxis, SAxis)) # 拟合圆 cv2.ellipse(img, ((X, Y), (LAxis, SAxis), Angle), (0, 0, 255), 1, cv2.LINE_AA) # 画圆 cv2.circle(img, (int(X), int(Y)), 3, (0, 0, 255), -1) # 画圆心 point_center.append(int(X)) point_center.append(int(Y)) rrt = cv2.fitEllipse(contours_merge) # x, y)代表椭圆中心点的位置(a, b)代表长短轴长度,应注意a、b为长短轴的直径,而非半径,angle 代表了中心旋转的角度 # print("rrt", rrt) cv2.ellipse(img, rrt, (255, 0, 0), 1, cv2.LINE_AA) # 画圆 x, y = rrt[0] cv2.circle(img, (int(x), int(y)), 3, (255, 0, 0), -1) # 画圆心 point_center.append(int(x)) point_center.append(int(y)) # print("no",(x,y)) cv2.imshow("fit circle", img) cv2.waitKey() # cv2.imwrite("./test2/fitcircle.png", img) # # 尝试寻找轮廓 # contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # # print('初次检测数量: ', len(contours)) # if len(contours) == 1: # cv2.drawContours(mask, contours[0], -1, (255, 255, 255), 1) # cv2.imwrite('./mask.png', mask) # x, y, w, h = cv2.boundingRect(contours[0]) # cv2.circle(img, (int(x+w/2), int(y+h/2)), 1, (0, 0, 255), -1) # cv2.rectangle(img, (x, y), (x + w + 1, y + h + 1), (0, 255, 255), 1) # point_center.append(x + w / 2 + point0[0]) # point_center.append(y + h / 2 + point0[1]) # cv2.imwrite('./center1.png', img) # else: # # 去除小面积杂点, 连接轮廓,求最小包围框 # kernel1 = np.ones((3, 3), dtype=np.uint8) # kernel2 = np.ones((2, 2), dtype=np.uint8) # grayImage = cv2.dilate(grayImage, kernel1, 1) # 1:迭代次数,也就是执行几次膨胀操作 # grayImage = cv2.erode(grayImage, kernel2, 1) # cv2.imwrite('./img_dilate_erode.png', grayImage) # contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # if len(contours) == 1: # cv2.drawContours(mask, contours[0], -1, (255, 255, 255), 1) # cv2.imwrite('./mask.png', mask) # x, y, w, h = cv2.boundingRect(contours[0]) # cv2.circle(img, (int(x + w / 2), int(y + h / 2)), 1, (0, 0, 255), -1) # cv2.rectangle(img, (x, y), (x + w + 1, y + h + 1), (0, 255, 255), 1) # point_center.append(x + w / 2 + point0[0]) # point_center.append(y + h / 2 + point0[1]) # cv2.imwrite('./center1.png', img) # else: # gray_circles = cv2.HoughCircles(grayImage, cv2.HOUGH_GRADIENT, 4, 10000, param1=100, param2=81, minRadius=10, maxRadius=19) # # cv2.imwrite('./img_gray_circles.jpg', gray_circles) # if len(gray_circles[0]) > 0: # print('霍夫圆个数:', len(gray_circles[0])) # for (x, y, r) in gray_circles[0]: # x = int(x) # y = int(y) # cv2.circle(grayImage, (x, y), int(r), (255, 255, 255), -1) # cv2.imwrite('./img_hf.jpg', grayImage) # # detector = cv2.SimpleBlobDetector_create(params) # keypoints = list(detector.detect(grayImage)) # for poi in keypoints: # 回归到原大图坐标系 # x_poi, y_poi = poi.pt[0], poi.pt[1] # cv2.circle(img, (int(x_poi), int(y_poi)), 20, (255, 255, 255), -1) # point_center.append(poi.pt[0] + point0[0]) # point_center.append(poi.pt[1] + point0[1]) # cv2.imwrite('./img_blob.png', img) # else: # for num_cont in range(len(contours)): # cont = cv2.contourArea(contours[num_cont]) # # if cont > 6: # # contours2.append(contours[num_cont]) # if cont <= 6: # x, y, w, h = cv2.boundingRect(contours[num_cont]) # cv2.rectangle(grayImage, (x, y), (x + w, y + h), (0, 0, 0), -1) # cv2.imwrite('./img_weilj.png', grayImage) # grayImage = lj_img(grayImage) # cv2.imwrite('./img_lj.png', grayImage) # contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # # print('再次检测数量: ', len(contours)) # # cv2.drawContours(mask, contours[0], -1, (255, 255, 255), 1) # cv2.imwrite('./mask.png', mask) # x, y, w, h = cv2.boundingRect(contours[0]) # cv2.circle(img, (int(x + w / 2), int(y + h / 2)), 1, (0, 0, 255), -1) # cv2.rectangle(img, (x, y), (x + w + 1, y + h + 1), (0, 255, 255), 1) # point_center.append(x + w / 2 + point0[0]) # point_center.append(y + h / 2 + point0[1]) # cv2.imwrite('./center1.png', img) return point_center[0], point_center[1] if __name__ == "__main__": for i in range(1,6): imageName = "s" imageName += str(i) path = './Images/danHoles/' + imageName + '.png' print(path) img = cv2.imread(path) point0 = [0, 0] cir_x, cir_y = mainFigure(img, point0) # img = cv2.imread('./Images/danHoles/s2.png') # point0 = [0, 0] # cir_x, cir_y = mainFigure(img, point0)
Ransac_Process.py
import cv2 import math import random import numpy as np from numpy.linalg import inv, svd, det import time class RANSAC: def __init__(self, data, threshold, P, S, N): self.point_data = data # 椭圆轮廓点集 self.length = len(self.point_data) # 椭圆轮廓点集长度 self.error_threshold = threshold # 模型评估误差容忍阀值 self.N = N # 随机采样数 self.S = S # 设定的内点比例 self.P = P # 采得N点去计算的正确模型概率 self.max_inliers = self.length * self.S # 设定最大内点阀值 self.items = 10 self.count = 0 # 内点计数器 self.best_model = ((0, 0), (1e-6, 1e-6), 0) # 椭圆模型存储器 def random_sampling(self, n): # 这个部分有修改的空间,这样循环次数太多了,可以看看别人改进的ransac拟合椭圆的论文 """随机取n个数据点""" all_point = self.point_data select_point = np.asarray(random.sample(list(all_point), n)) return select_point def Geometric2Conic(self, ellipse): # 这个部分参考了GitHub中的一位大佬的,但是时间太久,忘记哪个人的了 """计算椭圆方程系数""" # Ax ^ 2 + Bxy + Cy ^ 2 + Dx + Ey + F (x0, y0), (bb, aa), phi_b_deg = ellipse a, b = aa / 2, bb / 2 # Semimajor and semiminor axes phi_b_rad = phi_b_deg * np.pi / 180.0 # Convert phi_b from deg to rad ax, ay = -np.sin(phi_b_rad), np.cos(phi_b_rad) # Major axis unit vector # Useful intermediates a2 = a * a b2 = b * b # Conic parameters if a2 > 0 and b2 > 0: A = ax * ax / a2 + ay * ay / b2 B = 2 * ax * ay / a2 - 2 * ax * ay / b2 C = ay * ay / a2 + ax * ax / b2 D = (-2 * ax * ay * y0 - 2 * ax * ax * x0) / a2 + (2 * ax * ay * y0 - 2 * ay * ay * x0) / b2 E = (-2 * ax * ay * x0 - 2 * ay * ay * y0) / a2 + (2 * ax * ay * x0 - 2 * ax * ax * y0) / b2 F = (2 * ax * ay * x0 * y0 + ax * ax * x0 * x0 + ay * ay * y0 * y0) / a2 + \ (-2 * ax * ay * x0 * y0 + ay * ay * x0 * x0 + ax * ax * y0 * y0) / b2 - 1 else: # Tiny dummy circle - response to a2 or b2 == 0 overflow warnings A, B, C, D, E, F = (1, 0, 1, 0, 0, -1e-6) # Compose conic parameter array conic = np.array((A, B, C, D, E, F)) return conic def eval_model(self, ellipse): # 这个地方也有很大修改空间,判断是否内点的条件在很多改进的ransac论文中有说明,可以多看点论文 """评估椭圆模型,统计内点个数""" # this an ellipse ? a, b, c, d, e, f = self.Geometric2Conic(ellipse) E = 4 * a * c - b * b if E <= 0: # print('this is not an ellipse') return 0, 0 # which long axis ? (x, y), (LAxis, SAxis), Angle = ellipse LAxis, SAxis = LAxis / 2, SAxis / 2 if SAxis > LAxis: temp = SAxis SAxis = LAxis LAxis = temp # calculate focus Axis = math.sqrt(LAxis * LAxis - SAxis * SAxis) f1_x = x - Axis * math.cos(Angle * math.pi / 180) f1_y = y - Axis * math.sin(Angle * math.pi / 180) f2_x = x + Axis * math.cos(Angle * math.pi / 180) f2_y = y + Axis * math.sin(Angle * math.pi / 180) # identify inliers points f1, f2 = np.array([f1_x, f1_y]), np.array([f2_x, f2_y]) f1_distance = np.square(self.point_data - f1) f2_distance = np.square(self.point_data - f2) all_distance = np.sqrt(f1_distance[:, 0] + f1_distance[:, 1]) + np.sqrt(f2_distance[:, 0] + f2_distance[:, 1]) Z = np.abs(2 * LAxis - all_distance) delta = math.sqrt(np.sum((Z - np.mean(Z)) ** 2) / len(Z)) # Update inliers set inliers = np.nonzero(Z < 0.8 * delta)[0] inlier_pnts = self.point_data[inliers] return len(inlier_pnts), inlier_pnts def execute_ransac(self): Time_start = time.time() while math.ceil(self.items): # print(self.max_inliers) # 1.select N points at random select_points = self.random_sampling(self.N) # 2.fitting N ellipse points ellipse = cv2.fitEllipse(select_points) # 3.assess model and calculate inliers points inliers_count, inliers_set = self.eval_model(ellipse) # 4.number of new inliers points more than number of old inliers points ? if inliers_count > self.count: ellipse_ = cv2.fitEllipse(inliers_set) # fitting ellipse for inliers points self.count = inliers_count # Update inliers set self.best_model = ellipse_ # Update best ellipse # print("self.count", self.count) # 5.number of inliers points reach the expected value if self.count > self.max_inliers: print('the number of inliers: ', self.count) break # Update items # print(math.log(1 - pow(inliers_count / self.length, self.N))) self.items = math.log(1 - self.P) / math.log(1 - pow(inliers_count / self.length, self.N)) return self.best_model if __name__ == '__main__': # 1.find ellipse edge line contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) # 2.Ransac fit ellipse param points_data = np.reshape(contours, (-1, 2)) # ellipse edge points set Ransac = RANSAC(data=points_data, threshold=0.5, P=.99, S=.618, N=10) (X, Y), (LAxis, SAxis), Angle = Ransac.execute_ransac()
检测对象
检测结果
蓝色是直接椭圆拟合的结果
红色是Ransc之后的结果
加载全部内容