Python实现多个圆和圆中圆的检测
天人合一peng 人气:0主要思想是先检测外边圆和圆心
然后再外圆内检测小圆,计算小圆圆心与外圆圆心的距离判断是不是有问题
或者可以计算两圆圆心的距离
# coding:utf-8 import math import cv2 import numpy as np import os def findNeedlePoints(img): gray_src= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) minThreshValue = 50 _, gray = cv2.threshold(gray_src, minThreshValue, 255, cv2.THRESH_BINARY) erosion_size = 3 # element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * erosion_size + 1, 2 * erosion_size + 1), # (erosion_size, erosion_size)) element = cv2.getStructuringElement(cv2.MORPH_ERODE, (2 * erosion_size + 1, 2 * erosion_size + 1), (erosion_size, erosion_size)) # MORPH_ELLIPSE 不同的测试一下 erosion_gray = cv2.erode(gray, element, 3) cv2.imshow("erosion_gray", erosion_gray) paramsIn = cv2.SimpleBlobDetector_Params() paramsIn.filterByArea = True # 不同图片应该调节的参数 paramsIn.minArea = 80 paramsIn.maxArea = 1000 paramsIn.minDistBetweenBlobs = 80 paramsIn.filterByColor = True paramsIn.filterByConvexity = False paramsIn.minThreshold = 100*2 paramsIn.maxThreshold = 1000 # 图像取反 needleGray = 255 - erosion_gray.copy() # 中值滤波和腐蚀去噪 needleGray = cv2.medianBlur(needleGray, 3) # cv2.imshow('needleGray', needleGray) erosion_size = 2 element = cv2.getStructuringElement(cv2.MORPH_RECT, (2 * erosion_size + 1, 2 * erosion_size + 1), (erosion_size, erosion_size)) needlePoints = cv2.erode(needleGray, element, 1) cv2.imshow('needle=Points', needlePoints) detector2 = cv2.SimpleBlobDetector_create(paramsIn) needleKeypoints = detector2.detect(needlePoints) # opencv needle_keypoints = cv2.drawKeypoints(needlePoints, needleKeypoints, np.array([]), (255, 0, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) allNeedlePoints = [] if needleKeypoints is not None: for i in range(len(needleKeypoints)): allNeedlePoints.append(needleKeypoints[i].pt) color_img = cv2.cvtColor(needle_keypoints, cv2.COLOR_BGR2RGB) # needle_img = cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB) cv2.imshow('holeShow', color_img) # cv2.imshow('needleShow', needle_img) cv2.waitKey() def innerHoughCicle(hsv_image, src_image, rect): # 霍夫变换圆检测 gray_src = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2RGB) gray_src = cv2.cvtColor(gray_src, cv2.COLOR_RGB2GRAY) minThreshValue = 100 _, gray = cv2.threshold(gray_src, minThreshValue, 255, cv2.THRESH_BINARY) kernel1 = np.ones((3, 3), dtype=np.uint8) kernel2 = np.ones((3, 3), dtype=np.uint8) gray = cv2.erode(gray, kernel2, 2) gray = cv2.dilate(gray, kernel1, 2) # 1:迭代次数,也就是执行几次膨胀操作 # cv2.namedWindow("gray", 2) # cv2.imshow("gray", gray) # cv2.waitKey() circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 2, 100, param1=100, param2=60, minRadius=10, maxRadius=100) # 如果没检测到会报错 # 这种判断方式过于简单 if circles is None: print("没有检测到连接器外圆") else: for circle in circles[0]: # 圆的基本信息 # print(circle[2]) # 坐标行列-圆心坐标 out_x = int(circle[0]) out_y = int(circle[1]) # 半径 r = int(circle[2]) # # 在原图用指定颜色标记出圆的边界 cv2.circle(hsv_image, (out_x, out_y), r, (0, 0, 255), 2) # # 画出圆的圆心 cv2.circle(hsv_image, (out_x, out_y), 3, (0, 0, 255), -1) cv2.namedWindow("hsv_circle", 2) cv2.imshow("hsv_circle",hsv_image) cv2.waitKey() def outHoughCicle(hsv_image, src_image, rect): # 霍夫变换圆检测 gray_src = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2RGB) gray_src = cv2.cvtColor(gray_src, cv2.COLOR_RGB2GRAY) minThreshValue = 50 _, gray = cv2.threshold(gray_src, minThreshValue, 255, cv2.THRESH_BINARY) kernel1 = np.ones((3, 3), dtype=np.uint8) kernel2 = np.ones((3, 3), dtype=np.uint8) gray = cv2.erode(gray, kernel2, 2) gray = cv2.dilate(gray, kernel1, 2) # 1:迭代次数,也就是执行几次膨胀操作 cv2.namedWindow("gray", 2) cv2.imshow("gray", gray) cv2.waitKey() circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 10e10, param1=100, param2=60, minRadius=500, maxRadius=10000) # 如果没检测到会报错 # 这种判断方式过于简单 if circles is None: print("没有检测到连接器外圆") else: for circle in circles[0]: # 圆的基本信息 # print(circle[2]) # 坐标行列-圆心坐标 out_x = int(circle[0]) out_y = int(circle[1]) # 半径 r = int(circle[2]) # # 在原图用指定颜色标记出圆的边界 cv2.circle(hsv_image, (out_x, out_y), r, (0, 0, 255), 2) # # 画出圆的圆心 cv2.circle(hsv_image, (out_x, out_y), 3, (0, 0, 255), -1) # 画在原图上 cv2.circle(src_image, (out_x + rect[0], out_y + rect[1]), r, (0, 0, 255), 2) # # 画出圆的圆心 cv2.circle(src_image, (out_x + rect[0], out_y+ rect[1]), 3, (0, 0, 255), -1) cv2.namedWindow("hsv_circle", 2) cv2.imshow("hsv_circle",hsv_image) cv2.namedWindow("src_image", 2) cv2.imshow("src_image",src_image) cv2.waitKey() # 检测针脚位置 def needelCenter_detect(img): params = cv2.SimpleBlobDetector_Params() # Setup SimpleBlobDetector parameters. # print('params') # print(params) # print(type(params)) # Filter by Area. params.filterByArea = True params.minArea = 100 params.maxArea = 10e3 params.minDistBetweenBlobs = 50 # params.filterByColor = True params.filterByConvexity = False # tweak these as you see fit # Filter by Circularity params.filterByCircularity = False params.minCircularity = 0.2 # params.blobColor = 0 # # # Filter by Convexity # params.filterByConvexity = True # params.minConvexity = 0.87 # Filter by Inertia # params.filterByInertia = True # params.filterByInertia = False # params.minInertiaRatio = 0.01 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect blobs. minThreshValue = 100 _, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY) erosion_size = 1 # element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * erosion_size + 1, 2 * erosion_size + 1), # (erosion_size, erosion_size)) element = cv2.getStructuringElement(cv2.MORPH_ERODE, (2 * erosion_size + 1, 2 * erosion_size + 1), (erosion_size, erosion_size)) dilate_gray = cv2.dilate(gray, element, 1) # cv2.namedWindow("gray", 2) # cv2.imshow("gray",dilate_gray) # cv2.waitKey() detector = cv2.SimpleBlobDetector_create(params) keypoints = detector.detect(dilate_gray) # print(len(keypoints)) # print(keypoints[0].pt[0]) # 如果这儿没检测到可能会出错 if len(keypoints) == 0: print("没有检测到针角坐标,可能需要调整针角斑点检测参数") print(keypoints) return keypoints else: print("检测到孔的数量", len(keypoints)) # im_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]), (255, 0, 0), # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # # color_img = cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB) # 画出圆的圆心 # for kp in keypoints: # cv2.circle(img, (int(kp.pt[0]), int(kp.pt[1])), 3, (0, 0, 255), -1) # # cv2.namedWindow("color_img", 2) # cv2.imshow("color_img",img) # # cv2.waitKey() return keypoints # 检测外部区域针或孔的位置 def out_circle_detect(rect_hole_info, src): # 灰度化 circle_img = rect_hole_info gray = cv2.cvtColor(circle_img, cv2.COLOR_HSV2RGB) gray = cv2.cvtColor(gray, cv2.COLOR_RGB2GRAY) # 输出图像大小,方便根据图像大小调节minRadius和maxRadius # print(image.shape) # 进行中值滤波 img = cv2.medianBlur(gray, 3) erosion_size = 3 # element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * erosion_size + 1, 2 * erosion_size + 1), # (erosion_size, erosion_size)) element = cv2.getStructuringElement(cv2.MORPH_ERODE, (2 * erosion_size + 1, 2 * erosion_size + 1), (erosion_size, erosion_size)) dilate_gray = cv2.dilate(img, element, 1) # cv2.namedWindow("dilate_gray", 2) # cv2.imshow("dilate_gray", dilate_gray) # cv2.waitKey() # 针角圆心坐标 out_x, out_y, r = 0, 0, 0 # 霍夫变换检测最大圆 circles = cv2.HoughCircles(dilate_gray, cv2.HOUGH_GRADIENT, 1, 1000, param1=100, param2=30, minRadius=500, maxRadius=1000) # 如果没检测到会报错 # 这种判断方式过于简单 if circles is None: print("没有检测到连接器外圆") return 0, 0, 0 else: for circle in circles[0]: # 圆的基本信息 # print(circle[2]) # 坐标行列-圆心坐标 out_x = int(circle[0]) out_y = int(circle[1]) # 将检测到的坐标保存 # 半径 r = int(circle[2]) # print(r) # # # 在原图用指定颜色标记出圆的边界 cv2.circle(circle_img, (out_x, out_y), r, (0, 0, 255), 2) # # 画出圆的圆心 cv2.circle(circle_img, (out_x, out_y), 5, (0, 0, 255), -1) cv2.namedWindow("circle_imgs", 2) cv2.imshow("circle_imgs", circle_img) cv2.waitKey() return out_x, out_y, r # 检测内部区域针或孔的位置 def inner_circle_detect(rect_hole_info, src): # 灰度化 circle_img = rect_hole_info gray = cv2.cvtColor(circle_img, cv2.COLOR_HSV2RGB) gray = cv2.cvtColor(gray, cv2.COLOR_RGB2GRAY) # 输出图像大小,方便根据图像大小调节minRadius和maxRadius # print(image.shape) # 进行中值滤波 img = cv2.medianBlur(gray, 3) erosion_size = 3 # element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * erosion_size + 1, 2 * erosion_size + 1), # (erosion_size, erosion_size)) element = cv2.getStructuringElement(cv2.MORPH_ERODE, (2 * erosion_size + 1, 2 * erosion_size + 1), (erosion_size, erosion_size)) dilate_gray = cv2.dilate(img, element, 1) # cv2.namedWindow("dilate_gray", 2) # cv2.imshow("dilate_gray", dilate_gray) # cv2.waitKey() # 针角圆心坐标 out_x_p = [] out_y_p = [] rudis = [] # 霍夫变换检测最大圆 circles = cv2.HoughCircles(dilate_gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=20, maxRadius=100) # 如果没检测到会报错 # 这种判断方式过于简单 if circles is None: print("没有检测到连接器外圆") return out_x_p, out_y_p else: for circle in circles[0]: # 圆的基本信息 # print(circle[2]) # 坐标行列-圆心坐标 out_x = int(circle[0]) out_y = int(circle[1]) # 将检测到的坐标保存 out_x_p.append(out_x) out_y_p.append(out_y) # 半径 r = int(circle[2]) rudis.append(r) # print(r) # # # 在原图用指定颜色标记出圆的边界 cv2.circle(circle_img, (out_x, out_y), r, (0, 0, 255), 2) # # 画出圆的圆心 cv2.circle(circle_img, (out_x, out_y), 5, (0, 0, 255), -1) cv2.namedWindow("circle_img", 2) cv2.imshow("circle_img",circle_img) cv2.waitKey() # 记录外圆坐标 out_xpoints = out_x_p.copy() out_ypoints = out_y_p.copy() out_rudis = rudis.copy() # print("out_xpoints",out_xpoints) # print("out_ypoints",out_ypoints) # 只框出单个针角的位置区域 step_center = 25 step_rect = 50 # 遍历所有的孔的位置 # 记录孔的位置 in_x_p = [] in_y_p = [] for i in range(0, len(out_xpoints)): out_x_begin = out_xpoints[i] - step_center out_y_begin = out_ypoints[i] - step_center needleRect = circle_img[out_y_begin: out_y_begin + step_rect, out_x_begin: out_x_begin + step_rect] # cv2.namedWindow("needleRect", 2) # cv2.imshow("needleRect", needleRect) # cv2.waitKey() # 根据检测到的圆形连接器中心找针角位置 centerPoint = needelCenter_detect(needleRect) # print(len(centerPoint)) if len(centerPoint) == 0: out_x_p.remove(out_xpoints[i]) out_y_p.remove(out_ypoints[i]) rudis.remove(out_rudis[i]) print("调整位置") else: for cp in centerPoint: # 将针角的坐标原还至原图 in_x = int(cp.pt[0]) in_y = int(cp.pt[1]) in_x += out_x_begin in_y += out_y_begin in_x_p.append(in_x) in_y_p.append(in_y) # # # 画出中心孔的圆心 # cv2.circle(circle_img, (in_x, in_y), 4, (0, 255, 0), -1) # # 画出外孔的圆心 # cv2.circle(circle_img, (out_xpoints[i], out_ypoints[i]), 4, (0, 0, 255), -1) # # 计算两者的距离 # # 假设通过标定其一个像素代表0.0056mm # DPI = 0.0198 # dis = math.sqrt(math.pow(out_xpoints[i] - in_x,2) + math.pow(out_ypoints[i] - in_y,2)) # print("两者相互之间的距离为(mm):", dis*DPI) return in_x_p,in_y_p # cv2.namedWindow("image", 2) # cv2.imshow("image",circle_img) # cv2.waitKey() # if len(out_x_p) == 0: # print("没检测到,需要调整位置") # else: # for j in range(0,len(out_x_p)): # # 画出外孔的圆心 # cv2.circle(circle_img, (out_x_p[j], out_y_p[j]), rudis[j], (0, 0, 255), 3) # cv2.circle(circle_img, (out_x_p[j], out_y_p[j]), 3, (0, 0, 255), -1) # # # cv2.circle(circle_img, (in_x_p[j], in_y_p[j]), 3, (0, 255, 0), -1) # # cv2.namedWindow("image", 2) # cv2.imshow("image",circle_img) # cv2.waitKey() def j599_4_holes_dectWX(imagePath, templatePath): # templatePath需要用户手动框获取ROI img = cv2.imread(imagePath) img_roi = cv2.imread(templatePath) if img_roi is None: print("no image") # HSV二值化 img_roi = cv2.medianBlur(img_roi, 5) # 中值滤波 outx, outy, outR = out_circle_detect(img_roi, img) print(outx, outy, outR ) inx, iny = inner_circle_detect(img_roi, img) if len(inx) == 0 or outx == 0: print("没检测到位置") return "没检测到对象", -1 else: cv2.circle(img_roi, (outx, outy), outR, (0, 0, 255), 3) is_ok = [] for k in range(0, len(inx)): # 计算两者的距离 # 假设通过标定其一个像素代表0.0056mm # 两者相互之间的距离为(mm): 9.311053946788194 # 两者相互之间的距离为(mm): 9.163550379629067 # 两者相互之间的距离为(mm): 8.95984457900917 # 两者相互之间的距离为(mm): 8.977940966613671 # 平均值为 9.103 所以其阈值为9.103 + 0.5 DPI = 0.0198 dis = math.sqrt(math.pow(outx - inx[k], 2) + math.pow(outy - iny[k], 2)) dis *= DPI # print("两者相互之间的距离为(mm):", dis) if dis < 9.603: cv2.circle(img_roi, (inx[k], iny[k]), 8, (0, 255, 0), -1) # print("没有插针歪斜,产品合格") is_ok.append(1) else: cv2.circle(img_roi, (inx[k], iny[k]), 20, (0, 0, 255), 3) # print("有插针歪斜,不合格") is_ok.append(0) # cv2.namedWindow("image", 2) # cv2.imshow("image",img_roi) # cv2.waitKey() isExists = os.path.exists("./runs/J599/") if not isExists: os.makedirs("./runs/J599/") cv2.imwrite("./runs/J599/result.jpg", img_roi) if 0 in is_ok: print("有插针歪斜,不合格") return "有插针歪斜,不合格" else: print("没有插针歪斜,产品合格") return "没有插针歪斜,产品合格" if __name__ == "__main__": reslut = j599_4_holes_dectWX("images/Final/E_0_8.jpg","J599-4holes_template.jpg") print(reslut) # # # # # 4holes # img = cv2.imread("images/Final/E_0_8.jpg", 1) # # img_roi = img[973:2027, 1713:2751] # # img_roi = img[852:2224, 1515:2940] # img_roi = img[842:2234, 1480:2950] # cv2.imwrite("J599-4holes_template.jpg",img_roi) # # # cv2.namedWindow("img_roi",2) # # cv2.imshow("img_roi", img_roi) # # cv2.waitKey() # if img_roi is None: # print("no image") # else: # # HSV二值化 # img_roi = cv2.medianBlur(img_roi, 5) # 中值滤波 # outx, outy, outR = out_circle_detect(img_roi, img) # print(outx, outy, outR ) # inx, iny = inner_circle_detect(img_roi, img) # if len(inx) == 0 or outx == 0: # print("没检测到位置") # else: # cv2.circle(img_roi, (outx, outy), outR, (0, 0, 255), 3) # # for k in range(0, len(inx)): # # 计算两者的距离 # # 假设通过标定其一个像素代表0.0056mm # # 两者相互之间的距离为(mm): 9.311053946788194 # # 两者相互之间的距离为(mm): 9.163550379629067 # # 两者相互之间的距离为(mm): 8.95984457900917 # # 两者相互之间的距离为(mm): 8.977940966613671 # # 平均值为 9.103 所以其阈值为9.103 + 0.5 # DPI = 0.0198 # dis = math.sqrt(math.pow(outx - inx[k], 2) + math.pow(outy - iny[k], 2)) # dis *= DPI # # print("两者相互之间的距离为(mm):", dis) # if dis > 9.603: # cv2.circle(img_roi, (inx[k], iny[k]), 20, (0, 0, 255), 3) # print("有插针歪斜,不合格") # else: # cv2.circle(img_roi, (inx[k], iny[k]), 8, (0, 255, 0), -1) # print("没有插针歪斜,产品合格") # # cv2.namedWindow("image", 2) # cv2.imshow("image",img_roi) # cv2.waitKey()
加载全部内容